
School of Earth and Planetary Sciences

Utilising Semantic Web Technologies for Improved Road
Network Information Exchange

Michael Georg Niestroj

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

September 2021



Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university.

Signature:

Michael Georg Niestroj

September 2021

ii



‘Few are those who see with their own eyes and feel with their own hearts.’

— Albert Einstein

iii



Statement of Contributors

Supervisors:

Dr David A. McMeekin (Primary Supervisor)

Dr David Belton (Secondary Supervisor)

Dr Petra Helmholz (Secondary Supervisor)

Funding:

This research is supported by the Australian Government through the Australian

Research Council LP160100524, Curtin University and the Sustainable Built En-

vironment National Research Centre Project 2.33 and its partners. The core

partners are Swinburne University of Technology, Queensland University of Tech-

nology, the University of Melbourne, the New Zealand Transport Agency, Main

Roads Western Australia, Roads and Maritime Services and Aurecon Australasia

PTY LTD.

Signature:

Michael Georg Niestroj

Date: 10th September 2021

Signature:

Dr David A. McMeekin

Date: 10th September 2021

iv



Statement of Contributions

The following peer-reviewed publications are referenced in the thesis.

Paper #1 :

Niestroj, M. G., McMeekin, D. A., and Helmholz, P.: Overview of stan-

dards towards road asset information exchange, Int. Arch. Photogramm.

Remote Sens. Spatial Inf. Sci., XLII-4, 443–450, https://doi.org/10.519

4/isprs-archives-XLII-4-443-2018, 2018.

Paper #2 :

Niestroj, M. G., McMeekin, D. A., Helmholz, P., and Kuhn, M.: A pro-

posal to use Semantic Web Technologies for improved road network informa-

tion exchange, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.,

IV-4, 147–154, https://doi.org/10.5194/isprs-annals-IV-4-147-20

18, 2018.

Paper #3 :

Niestroj, M. G., McMeekin, D. A., and Helmholz, P.: Introducing a frame-

work for conflating road network data with Semantic Web Technologies, IS-

PRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 231–238,

https://doi.org/10.5194/isprs-annals-IV-2-W5-231-2019, 2019.

https://doi.org/10.5194/isprs-archives-XLII-4-443-2018
https://doi.org/10.5194/isprs-archives-XLII-4-443-2018
https://doi.org/10.5194/isprs-annals-IV-4-147-2018
https://doi.org/10.5194/isprs-annals-IV-4-147-2018
https://doi.org/10.5194/isprs-annals-IV-2-W5-231-2019


Candidate Attributions: Michael Georg Niestroj

Task / Publication Paper #1 Paper #2 Paper #3
Conception & design X X X
Acquisition of data & method X X X
Data conditioning & manipulation X X X
Analysis & statistical method X X X
Interpretation & discussion X X X
Final approval X X X

Co-Author Attributions: Dr David McMeekin

Task / Publication Paper #1 Paper #2 Paper #3
Conception & design X X X
Acquisition of data & method
Data conditioning & manipulation
Analysis & statistical method
Interpretation & discussion X X X
Final approval X X X

Co-Author Attributions: Dr Petra Helmholz

Task / Publication Paper #1 Paper #2 Paper #3
Conception & design X X X
Acquisition of data & method
Data conditioning & manipulation
Analysis & statistical method
Interpretation & discussion X X X
Final approval X X X

Co-Author Attributions: Associate Professor Michael Kuhn

Task / Publication Paper #2
Conception & design X
Acquisition of data & method
Data conditioning & manipulation
Analysis & statistical method
Interpretation & discussion X
Final approval X



I acknowledge that these represent my contributions to the above research output:

Signature:

Michael Georg Niestroj

Date: 10th September 2021

Signature:

Dr David A. McMeekin

Date: 10th September 2021

Signature:

Dr Petra Helmholz

Date: 10th September 2021

Signature:

Associate Professor Michael Kuhn

Date: 10th September 2021



Acknowledgements

The completion of my dissertation would not have been possible without the sup-

port and nurturing of my supervisor, Dr David McMeekin, and my co-supervisors,

Dr Petra Helmholz and Dr David Belton. I have learnt a lot from you, and your

effort and your guidance will be a foundation of my future career path from now

on. Special thanks to Emeritus Professor Geoff West, who was part of the team

that applied for the overall research proposal of the LP160100524-CONie open

standard research project, which made this research possible.

Many thanks to Professor Robin Drogemuller, who pointed out the ontology

achievements of this thesis in a practical use case of a route planner driven by

Semantic Web technologies. I am also grateful to my thesis chair, Associate

Professor Michael Kuhn, who supported me with the completion of my research

proposal.

I would like to acknowledge the assistance of Professor Tele Tan, who moti-

vated me at the right moment to begin the writing of this dissertation. I am also

grateful to Dr Ivana Ivanova, who spent her time working with me on the data

provenance concept, to Dr Jeremy Siao Him Fa, who introduced me to Semantic

Web technologies, and to Tristan Reed, who helped me with technical printing

issues.

A special thanks goes to Dr Marcin Wolski, Dr Claudia De Los Rios Perez,

Dr Ashty Saleem, Dr Yousif Mousa, Tong Ding, Yuchen Liu, Eman Albalawi, Dr

Dimitri Bulatov and Dr Rebecca Ilehag for their friendship, which is priceless to

me. A shout-out to my night buddies, Dr Heng Zhou and Dr Keone Kelobonye;

viii



no comments here, as the night sessions were always very productive. I also

had the great pleasure of sharing an office with Dr Richard Palmer, Dr Hoang

Long Nguyen, Dr Mustafa Hamoodi, Dr Mortaza Rezae, Roula Zougheibe, Jayita

Chakraborty, Saseeka Wijesekera and Cui Hengyang.

I would also like to extend my deepest gratitude to Professor Thomas Felder-

hoff, who prepared me well for this successful journey, and to Professor Burkhard

Igel, who motivated me to contact Professor Tele Tan and Emeritus Professor

Geoff West, which helped me achieve the milestone of studying at Curtin.

I would like to thank my friends, relatives, family members and everyone who

wishes to be mentioned here. A special thanks goes to my mother, who always

supported me and was with me through the highs and lows. None of this would

have been possible without the mental support of my wife, Xi, my son, Bosie

Jacob, and my daughter Bobbi Yvonne; they were always there for me, and their

love is a fundamental driver of my life.



Abstract

Road asset data harmonisation is a challenge for the Australian road and trans-

port authorities considering their heterogeneous data standards, data formats and

tools. Classic data harmonisation techniques require huge databases with many

tables, a unified metadata definition and standardised tools to share data with

others. In order to find a better way to harmonise heterogeneous road network

data, this dissertation will use Semantic Web technologies to investigate fast and

efficient road asset data harmonisation. The corresponding findings will lead to

the development of a new route planning framework driven by Semantic Web

technologies.

Therefore, new ontologies are designed for the management of various road as-

set and road-asset-related datasets from Main Roads Western Australia (MRWA),

the Western Australian Land Information Authority (Landgate), Western Power

and OpenStreetMap (OSM), which include road sections, overhead power lines,

regulatory signs, intersections, speed limits, traffic signal sites and road stop-

ping places. The ontologies are populated with a newly developed script that is

customised for each dataset individually. The script processes the data entries,

analyses relations to other data entries and writes the data into the Resource

Description Framework (RDF) ontology format. From this, separate data indi-

viduals can be created for the location of each road asset in the form of multi-line

strings, line strings and points. As part of the data creation process, a novel

approach is introduced that integrates data provenance for each data entry to in-

x



form about the origin of the data entry, the individual use case and the associated

location entities.

This research includes three studies that investigate heterogeneous road net-

work data, Semantic Web technologies and route planning.

The first study compares road network centreline data from MRWA and

Landgate to give information about the location discrepancies of the same road

networks provided by different authorities. The comparison is supported by a

newly developed algorithm that applies seven carefully formulated translation

methods that enable the translation of MRWA intersections and road sections to

the layout of the Landgate road network. The translated MRWA road network

harmonises with the Landgate road asset data, which enables a numeral distance

evaluation of the translated road section vertex and intersection features.

The second study adapts a newly designed ontology that acts as a data ware-

house for the newly created MRWA, Landgate and OSM ontologies. Part of the

ontology is a set of new integrated semantic rules that enable data conflation

among different datasets and activate a trust score for road asset data sources.

The data conflation approach with provenance support is a first step towards

road asset data harmonisation; it introduces novel data access for machines to

understand the same meaning of road asset data. The trust score is an important

factor for data on the web, as it allows the classification of datasets with respect

to their lineage.

The third and final study uses the road asset and road-asset-related individuals

of the road network ontologies to populate a new route planning framework to

demonstrate the efficiency of the Semantic Web for the road network in a possible

industrial application. The development provides an interface to save planned

routes in RDF format as well as to read a route back from RDF format into

the route planner. The route planner supports the configuration of customisable

constraints for route planning, e.g. turning circles, regulatory signs, traffic signal

sites, rail crossings, road stopping places and overhead power lines. Although



overhead power lines are well known for being a dangerous and deadly obstacle

and are often involved in accidents with heavy vehicles, their integration in a

route planning framework has not been considered by others before.

The evaluation of each study uses various tests and road network sample

selections to demonstrate each approach’s accuracy and industrial usage.
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Chapter 1

Introduction

1.1 Introduction and Context of the Study

As the main objective, this dissertation investigates road asset data management

from a new perspective utilising Semantic Web technologies that enable linking,

sharing and reusing data with other datasets effortlessly on the Web in a machine-

readable format (Berners-Lee et al., 2001; Bizer et al., 2009; Qi et al., 2013).

The data-linking feature of the Semantic Web is a key component to conflate

(by means of merging) datasets with the same meaning from heterogeneous data

sources. Road network centreline data will be analysed for the same road network

selections of different authorities to identify possible discrepancies in the road

network representation. The findings will be tested with case studies, which will

lead to the development of a new route planning framework for the road network

in Western Australia driven by Semantic Web technologies.

The proposed route planner contributes to the second objective with an ap-

proach to overcome the problem of crossing overhead power lines, which is a

well-known high risk obstacle for heavy vehicles (Koustellis et al., 2011; Crow,

2009; Cawley & Homce, 2003) and, to the best of the author’s knowledge, has

not been examined by other researchers in the literature.
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Two of the most used research methods in science include qualitative and

quantitative methods (Borrego et al., 2009). Qualitative research pursues an ob-

jective analysis of collected data-sets, where variables are complex and analysed

by a researcher to find information within a dataset (Johnston, 2010). Quantita-

tive research applies a statistical analysis to numerical datasets, whereby tools can

be used to evaluate the data (Dörnyei, 2007). A combination of both research

methods is called a mixed research method and combines the two mentioned

methods at either the data collection or the data analysis levels (Borrego et al.,

2009; Dörnyei, 2007).

Case studies can be processed with either a qualitative or a quantitative re-

search method (Johnston, 2010). This research will undertake a mixed research

method, as the case study that compares Main Roads Western Australia (MRWA)

road network data with related Western Australian Land Information Author-

ity (Landgate) data uses a quantitative research method that evaluates the trans-

lation data with a computer-supported numerical data analysis, and the route

planner case study is a qualitative approach in which the benefits and disadvan-

tages of the Semantic Web for the road network will be identified.

1.2 Statement of the Problem

Road asset data harmonisation is necessary for Australian road and transport

agencies, as each authority uses its own data formats, data standards and asset

management tools (Martin et al., 2019). The problem of not having a unified road

asset management system in Australia was identified at least 17 years ago by Li &

Kumar (2003) yet an accepted solution for handling the problem of heterogeneous

road asset data has not been adopted (Martin et al., 2019; Perumpilly et al., 2019;

Kenley et al., 2014; Austroads, 2016).

A recent governmental trial included the release of a data standard for road

management and investment in Australia and New Zealand by Austroads, the

main Australasian authority for road transport and traffic (Martin et al., 2019).
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Once an overall accepted solution is in place, annual cost savings of $65 to

$130 million can be achieved with a unified road asset data standard that enables

data transfer between different software systems (Gardner, 2015). Harmonising

Australia’s road asset data to a unified data format is challenging, as this has

been in demand for many years (Li & Kumar, 2003; Martin et al., 2019). Data

harmonisation approaches often consider a common valid metadata specification

to bypass the problem of heterogeneous metadata (Agarwal et al., 2013). This

sounds simple but is, in reality, associated with difficulties considering that each

authority is built on its own developed standards, tools and formats (Martin

et al., 2019). For instance, the Integrated Road Information System (IRIS) has

been MRWA’s road asset management system since 2003 (Mihai & Robertson,

2003; Goodlet, 2020). While visiting the MRWA head office and being introduced

to their internal asset management and work flow, it was mentioned that their

asset management is based on IRIS and that transferring and migrating to a new

unified standard is critical from a stakeholder perspective. It was also highlighted

that such an effort is very hard to realise and that a solution can cost several mil-

lion dollars just to migrate MRWA’s road assets to a new standard, such as the

Austroads road asset data harmonisation standard. Road and transport author-

ities operated by Australia’s and New Zealand’s state and territory governments

are confronted with similar challenges (Martin et al., 2019; Gardner, 2015).

1.3 Thesis Statement and Objectives

The utilisation of Semantic Web technologies could bridge the gap of a lack of

unified data standards, tools and data formats for Australian road and transport

authorities; the Semantic Web is a key component for efficient and fast road asset

data harmonisation in Australia.

To demonstrate the correctness of the thesis statement above, the following

research objectives will be addressed:
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Objective 1: Identification of data standards and ontologies for the represen-

tation of road networks with the target of delivering both a data

model and ontology for route planning.

Objective 2: Conceptualisation of a road network data model and a road

network ontology.

Objective 3: Development of a data processing approach to integrate road

network data into the Resource Description Framework (RDF)

format.

Objective 4: Utilisation of Semantic Web technologies to identify road assets

that mean the same thing from different data sources, to clas-

sify a trust score for a road asset data source, and to connect

surrounding road assets.

Objective 5: Comparison of road networks to identify similarities and differ-

ences in the location representation, of the same road networks

provided from different sources.

Objective 6: Development of a Semantic Web technology-driven route plan-

ning framework for heavy vehicles considering hurdles, such as

overhead power lines.

1.4 Scope of This Thesis

The scope of this thesis includes the identification of Semantic Web technologies

in relation to road network data in Australia, with a focus on the datasets that

are provided by the Western Australian data portal.1 To demonstrate the ability

of the Semantic Web to merge the data of independent data sources, datasets

from MRWA, Landgate and OpenStreetMap (OSM) will be used with a data

conflation approach.
1 https://data.wa.gov.au

6
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Overall, this thesis will explain the findings and approaches of three novel

contributions, which include the migration of road network assets into newly

designed ontologies, the translation of MRWA road sections and intersections

into Landgate road assets and finally, the development of a novel route planner

driven by Semantic Web technologies.

To migrate the road assets into the newly designed ontologies, arbitrary road

network selections will be chosen. The ontology integration of road asset types

will be limited to road sections, overhead power lines, stop and give way signs,

traffic signals, speed limits, roundabouts, intersections, rail crossings and road

stopping places. Road network selection datasets are prepared with the software

QGIS2 and saved in a unified coordinate reference system and data format, i.e.

European Petroleum Survey Group projection 4326 – World Geodetic System

1984 (WGS84)3 and GeoJSON4. An explanation of how the datasets were loaded

into QGIS, the areas of interest were selected and the data were saved as a

GeoJSON dataset will not be given, as this dissertation will focus on methods

that explain what can be done with a given dataset and not on how to save data

with a Geographic Information System (GIS) such as QGIS.

The translation of MRWA road network data into the Landgate data will

inform about the differences in datasets that describe the same road centreline

network provided by independent road authorities. The translated data will be

integrated into ontologies for a data conflation approach with semantic rules. The

translation results will not be used to inform about the map accuracy of the road

assets, as the employed road asset datasets do not contain information about

measurement uncertainties.

The route planner of this thesis will use Dijkstra (1959) as a base algorithm

for the route planning between a start and a target node. Dijkstra’s algorithm has

been chosen for the route planning because it is commonly referred to as a base
2 https://qgis.or
3 https://spatialreference.org/ref/epsg/wgs-84/
4 https://geojson.org
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algorithm to determine the shortest path (Bast et al., 2016; Cherkassky et al.,

1996; Gallo & Pallottino, 1988). The aim of this thesis is not to develop a better

or faster route planning algorithm but to demonstrate an ability to combine

available methods to form a new route planner for heavy vehicles considering

overhead power lines, speed limits, turning circles, traffic signals, regulatory signs,

rail crossings, road stopping places and road closures driven by Semantic Web

technologies and to demonstrate the advantages of the Semantic Web for the

road network.

To support the significant need for data harmonisation, novel semantic rules

will be designed and applied to the newly designed road network ontologies so

that data interoperability can be achieved with the road asset data of different

sources.

1.5 Significance of the Study

The first significant outcome of this study is that the findings will identify the

advantages and disadvantages of the Semantic Web for the contribution towards

road asset data harmonisation within the Western Australian road network. The

results can be then adapted for the road network data of other road and trans-

port authorities. The second outcome contributes to the design of an ontology

framework for road network data that can be used in the newly designed route

planner. Furthermore, the third outcome of the study is to use the route plan-

ner to create routes on the fly and integrate live data, such as road closures and

suburb information. A set of various constraints can be considered by the route

planner, such as overhead power lines, left turns, right turns, stop signs, give way

signs, traffic signal sites, rail crossings and road stopping places. The concept of

taking overhead power lines into account in route planning is new and has not

yet been investigated by other researchers. This demonstrates the integration of

Semantic Web technologies for the road network with a possible industrial appli-

cation implementation. Finally, this work will further support other researchers

8
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in the field of Semantic Web technologies who are considering using the Semantic

Web for road network and route planning approaches.

1.6 Thesis Structure

This thesis contains seven further chapters to deliver background information, to

select datasets, to design provenance and ontology models, to prepare elementary

content, to implement the methodology, to evaluate the findings and to conclude

this study, as indicated in Figure 1.1.

Chapter 1 Chapter 2 Chapter 3 Chapter 4

Chapter 7 Chapter 8

Introduction, problem 
statement, thesis 
statement, significance 
and thesis structure.

Background, literature 
review and introduction 
to Semantic Web 
Technologies.

Data selection 
and metadata 
explanation.

Ontology and 
provenance design.

Evaluation of road 
network translation, 
road network conflation 
and route planner.

Conclusions and 
future work.

Chapter 5
Semantic rules design, defining 
data processing features, 
introducing user interfaces and 
employed application 
programming interfaces.

Chapter 6
Implementation of the data 
creation, the road network 
translation and the route 
planning approaches.

Figure 1.1: Structure of this thesis.

In Chapter 2, an introduction to data harmonisation and Semantic Web tech-

nologies will be given to provide the reader with the knowledge required to un-

derstand the technical details of this thesis and to present the area of expertise

this work fits into. Furthermore, literature regarding the Semantic Web for road

networks will be reviewed to inform about practices and activities closely related

to this study that positively influenced this research.

In Chapter 3, the datasets will be introduced, and the related metadata in-

formation will be explained. Then, in Chapter 4, the newly designed ontologies

for the road network conflation and the route planning approaches will be shown,

and the provenance of each dataset will be visualised.

9
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In Chapter 5, the semantic rules for the road network, the route planner pro-

gramme features and the mock-ups to operate the route planner will be defined.

The road network processing features will be explained, including the road net-

work conflation approach, the road network translation features and the route

planner. Related to the route planner’s development, two application program-

ming interfaces (APIs) will be shown that helped with the ontology and the road

network processing.

In Chapter 6, the implementation of the methodology will be explained, which

includes the ontology data creation of GeoJSON datasets, the translation of road

network assets and the development of a route planner driver by Semantic Web

technologies. The data creation process will use flowcharts to explain the data

individuals’ creation process for original and translated datasets. In addition,

elementary ontology writing approaches that are processed in the data creation

process for each data entry, such as to write features, entities and metadata

individuals, will be explained. The road network translation approach will be

introduced with a flowchart, and the route planner will be explained in detail

with flowcharts, algorithms, source codes and supporting illustrations.

After that, in Chapter 7, the results of this study will be evaluated. In the

scope of that, road network ontologies will be reasoned to evaluate the road net-

work conflation process. Translated road networks will be analysed interactively

on a digital map, and the processed translation distance information will be eval-

uated. The route planner will be tested for usability, and the resulting routes will

be compared with route planners from Google and Microsoft Bing.

Finally, in Chapter 8, this study will conclude with an outlook that identifies

further possible research activities.

10



Chapter 2

Background

2.1 Chapter Introduction

Acceptance and awareness of the Semantic Web has been steadily moving forward

since its introduction by Berners-Lee et al. (2001). It is a key technique in solving

data harmonisation problems. Few have tried to harmonise road network data

with Semantic Web technologies. Although the use of Semantic Web technologies

seems to be a popular tool for Intelligent Transportation Systems (ITS) (e.g.

Fernandez et al., 2015; Sirin et al., 2007; Zhao et al., 2015, 2017; Provine et al.,

2004b; Schlenoff et al., 2004; Marasovic & Marasovic, 2010; Hülsen et al., 2011;

Niaraki & Kim, 2009; Provine et al., 2004a), its adoption for route planning

approaches is rare (e.g. Niaraki & Kim, 2009; Szwed et al., 2012; Houda et al.,

2010; De Oliveira et al., 2013; Corsar et al., 2015; Faaß, 2015). For heavy vehicles,

no route planner that considers hazardous overhead obstacles, such as power lines,

exists.

This chapter includes an introduction to data harmonisation and its use by

governments. The Semantic Web with its relevant technologies will be explained

regarding its use for road network applications; this significant contribution will

provide critical knowledge about what the Semantic Web is and will further ad-

dress Thesis Objective 1. This will lead the reader to route planning and an

11



CHAPTER 2. BACKGROUND: DATA HARMONISATION

introduction to Dijkstra’s shortest path algorithm. Finally, the risk of overhead

power lines for heavy vehicles will be discussed.

2.2 Data Harmonisation

The concept of data harmonisation has existed for more than 20 years (Patel &

Sharma, 2017). It is a process to merge different datasets into one large dataset

(Agarwal et al., 2013; Fichtinger et al., 2011), and is often supported by defining

common valid metadata specifiers before the merge is conducted (Agarwal et al.,

2013). A data harmonisation concept can also be seen as a data warehouse, as

data from various heterogeneous sources come together into a single place (Patel

& Sharma, 2017). It can be a challenge to find unified metadata definitions, as

various data aspects need to be considered, such as completeness, life span, origin,

quality and use case. Data harmonisation approaches are commonly limited to

applications that share data that mean the same thing. For instance, the main

organisation of Australia’s road traffic and transport agencies, Austroads is in the

process of implementing a data standard for road management and investment in

Australia and New Zealand. The standard aims to harmonise the national road

asset data across state borders (Martin et al., 2019).

2.2.1 Open Government Data

Many governments worldwide provide Open Government Data (OGD) that are

available via online data portals. In 2012, four of the largest OGD portals were

hosted by the United States (www.data.gov), the United Kingdom (www.da

ta.gov.uk), France (www.data.gouv.fr) and Singapore (www.data.gov.sg)

(Hendler et al., 2012). The OGD portal in Australia (www.data.gov.au) was

established in 2013. What open data portals have in common, according to

Parycek & Sachs (2010), is that their products are transparent, as information

is available to everyone and users can interact with the service in collaboration
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with the government. Nascimento et al. (2018); Linders & Wilson (2011) stated

that access to OGD is a human and civil right.

As OGD providers can contribute their data in any data format, as no recom-

mendation exists about a unified format (OECD, 2017). According to Tauberer

(2014), one of the principles of OGD is that data should be provided in a format

that can be processed by machines. The problem is that machines can process

data in various common data formats, such as CSV, JPEG, JSON, GeoJSON,

XLS, XLSX, XML, KML, ZIP, SHP and RDF without having a unified structure.

For instance, two governmental authorities in Western Australia enable access to

their road network centreline data through the Australian OGD, namely MRWA

and Landgate. Both authorities enable public access to their road centreline

datasets, but their underlying data structure is not in a unified format.

With the use of Semantic Web technologies, the problem of different data

structures can be treated with semantic rules, as long as the same meaning of

data can be assigned (Niknam & Karshenas, 2017).

2.3 Semantic Web

The Semantic Web is an extended version of the World Wide Web (WWW), with

well-defined structured data with which computers can interpret the meaning of

the contained information. Semantics is about understanding the meaning of

something using language (Löbner, 2013). Since its public adoption, the Web has

been accessible to everyone and is used by scientists especially on a daily basis

to keep up to date with current global research activities (Allemang & Hendler,

2011).

For a working Semantic Web, access to a collection of information and infer-

ence rules must be available, as this can be further used to conduct automated

reasoning. This kind of artificial intelligence is recognised as ‘knowledge repre-

sentation’ and was researched before the Web was created (e.g. (Genesereth &

Nilsson, 1987)). Therefore, the tasks of the Semantic Web are to express con-
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User interface and applications

Unifying Logic

Trust

Rules: RIF/SWRLontology: OWL

RDF Schema (RDF-S)
Query: SPARQL

Data interchange: Resource Description Framework (RDF)

Extensible Markup Language (XML)

Unicode encodingUniform Resource Identifier (URI)

Proof
C
r
y
p
t
o
g
r
a
p
h
yLayer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Figure 2.1: The Semantic Web technology stack (Berners-Lee, 2006; Gerber et al.,
2008; Curé & Blin, 2014).

tent with a clear logic behind the data model and to be adaptable for external

updates from any knowledge representation system. This means that one major

challenge for the Semantic Web community is to define rules, which are used to

make inferences, implement decisions and respond to questions. The logic has

to cover many types of decisions, which include complicated and science-related

tasks, and it must be able to describe complex object properties without getting

stuck (Berners-Lee et al., 2001).

The Semantic Web Stack is used for a layer-based visualisation of recom-

mended technologies for the Semantic Web, such as Uniform Resource Identi-

fier (URI), Web Ontology Language (OWL), RDF, RDF Schema (RDF-S) and

semantic rules (see Figure 2.1). The above-mentioned technologies will be ex-

plained in detail for the reader in the following sections of this thesis.

At the bottom of the stack Llayer 1), URIs are used to link to other documents

on the Web, and guidance is given to display characters in the Unicode character

set. In this dissertation, a sub-set of Unicode will be employed (American Stan-

14
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dard Code for Information Interchange) that includes in total 127 characters, e.g.

a–z, A–Z, 0–9, \, /, *, # and other standard characters.

Then, the Extensible Markup Language (XML) (Layer 2) and the RDF syntax

(Layer 3) can be used to write RDF data. In practice, XML is barely used for

ontology design, as it is cumbersome to apply. In the literature (e.g. Alexander,

2008), users prefer to write RDF in more efficient ways, such as with the Terse

RDF Triple Language (Turtle).

Layer 4 introduces RDF-S, which, for instance, can be used to describe sub-

classes and sub-properties. Layer 5 is employed by both ontologies and seman-

tic rules. With OWL, ontologies can be described more expressively than with

RDF-S. Semantic rules can be written in the Rule Interchange Format and in the

Semantic Web Rule Language (SWRL) and are used to add, change and remove

data attributes.

The opportunity to query RDF data is given by the SPARQL Protocol and

RDF Query Language (SPARQL) across Layers 4 and 5 (Curé & Blin, 2014).

Layer 6 recommends the adoption of a unifying logic, which means that available

RDF vocabularies can be included so that data with the same information can be

shared seamlessly. Data provenance can be integrated at Layer 7 to keep track

of the data’s origin, updates and use case. Layer 8 is about trust, which can

be information about who provided a dataset and how the data were collected

(e.g. measured by governmental authorities or collected by community effort)

as well as how trusted the ontology-delivered data are. Throughout Layers 1–8,

cryptographic data encoding and decoding ensure the communication between

each layer (Stinson, 2005). Layer 9 is on top of the Semantic Web technology

stack and includes applications as well as user interfaces to interact with the given

technologies.

The next section will provide further information about key elements of the

Semantic Web, such as URIs, ontologies, OWL, RDF, RDF-S, linked data, on-

tology reasoning, SPARQL and data provenance.
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2.3.1 URI

A URI is an overall valid declaration for any kind of resource on the Web, which

can be abstract or physical. This could be, for instance, a document, an email

address or a phone number. In the scope of this thesis, URIs will always con-

tain a Hypertext Transfer Protocol (HTTP)1 scheme and a host (e.g. exam-

ple.org, w3.org, purl.org or dbpedia.org) and will refer to documents on the

Web. This combination of scheme, host and path is also known as a names-

pace (see Figure 2.2). In the context of this thesis, a URI path will be pro-

vided in a hierarchical order (e.g. ‘/ontology/roadNetwork’ and ‘/ontology/road-

Network/roundabouts’), and a fragment will be used optionally to refer to spe-

cific content (e.g. ‘/ontology/roadNetwork/roads#RoadWithId1’ and ‘/ontolo-

gy/roadNetwork/roads#RoadWithNameA’).

http://www.example.org/ontologies/roadNetwork/roads#sampleContent
scheme pathhost fragment

namespace

Figure 2.2: The structure shows a URI divided into the scheme, host, path,
fragment and namespace.

2.3.2 Ontology

In this thesis, ontologies are related to computer science and describe an infor-

mation system with logical relations, as defined by Guarino et al. (2009). In the

first sense, an ontology is a logical theory that gives an ‘explicit, partial account

of a conceptualisation’, and in the second sense, it is a ‘synonym for conceptu-

alisation’ (Giaretta & Guarino, 1995, p. 6, p. 3). Borst (1997) introduced the

shared aspect of a conceptualisation. Studer et al. (1998) merged Gruber’s (1995)
1 The HTTP protocol is an Internet Engineering Task Force (IETF) standard to retrieve

documents online. A client requests information using an HTTP document address which
is processed by an HTTP server (Berners-Lee, 1991; Belshe et al., 2015). HTTP documents
are accessed by internet users on a daily base while navigating the internet with an internet
browser (e.g. Mozilla Firefox, Google Chrome, Microsoft Edge and Apple Safari).

16



CHAPTER 2. BACKGROUND: SEMANTIC WEB

and Borst’s (1997) definitions into ‘an ontology is a formal, explicit specification

of a shared conceptualisation’ (p. 184), as shared reflects that an ontology is

meant to be accessible by other external instances. To understand the above-

mentioned definitions of ‘conceptualisation’ and ‘formal, explicit specification’,

their meanings will be further explained.

Conceptualisation: A conceptualisation was defined by Genesereth & Nils-

son (1987) in the context of artificial intelligence as defining a structure, <

D,R >m with a domain, D, and a set of (conceptual) relative relations, R,

on D (Guarino, 1998). A conceptualisation can be simplified and expressed as

an approach to describing world objects, functions and relations (Nilsson, 1991).

Formal, explicit specification: Formal means here that an ontology has to

be in a machine-readable format, and explicit specification stands for an accurate

definition of concepts and their related constraints (Studer et al., 1998).

Ontologies are used to model a knowledge domain with the use of classes,

properties and the relations between the classes. They are usually written in

languages that allow one to define an abstract data model, such as OWL.

2.3.3 OWL

Web Ontology Language is a computational logic-based declarative language for

the Semantic Web recommended by the WWW Consortium (W3C) for ontology

development on the Web. The language supports the design of Semantic Web

documents (known as ontologies) and can be written along with RDF information.

Web Ontology Language 2 is an extended version of OWL 1 and inherits the

language features, design decision and use cases. With OWL 2, it is possible to

express knowledge about things, groups of things and relations between things

(Golbreich & Wallace, 2012).

Reasoners can be used to infer additional related ontology information (also

called knowledge), respecting that OWL statements can be either true or false.

For instance, if a set of statements A includes a statement B that requires that
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all statements of A are true, then B is also true (see Algorithm 2.1). The OWL

statements are usually applied to assign world objects into categories (e.g. ‘a give

way sign is a sign’) and to express relations (e.g. ‘road a, road b and stop sign

are part of the same intersection’) (Hitzler et al., 2012).

Algorithm 2.1: Example of a nested OWL statement (pseudo code).
1 A ←− set of A statements
2 B ←− statement (included in A)
3 if all A statements in A true then
4 B ←− true
5 end

All atomic entries, e.g. intersections, roads, road a, road b, give way sign and

stop sign, are called entities. Objects are individuals, e.g. road a, road b, give way

sign and stop sign. Categories are classes, e.g. sign and road, and relations are

properties, e.g. part of the same intersection. Properties are further separated

into object properties for object-to-object relations, e.g. as an intersection is

connected to a road. Data-type properties are used to assign a data value to

an object, e.g. assigning a road name to a road, and annotation properties are

used to encode information about the ontology, e.g. to read the metadata of an

individual (Hitzler et al., 2012).

A powerful OWL feature is the use of constructors to merge entity names into

expressions. For example, the classes ‘sign’ and ‘intersection’ can be combined

into the class expression ‘signed intersections’. The resulting expression can then

be used to classify intersections with road signs.

2.3.4 RDF

The RDF is recommended by the W3C to encode structured metadata that can

be shared and reused (Miller, 2001). The RDF infrastructure can be employed

for interoperability between different metadata elements. Vocabularies are used

in RDF to describe a set of metadata elements or a set of properties. Anyone can
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provide RDF vocabularies. Predefined vocabularies are available to be reused for

large-scale compatibility (Miller, 2001).

The Linked Open Vocabularies2 data portal evaluates and counts the use of

ontologies among other ontologies. The following list summarises some of the

most commonly used RDF vocabularies:

• Dublin Core Metadata Element Set:3 the specification contains 15 metadata

properties (title, creator, subject, description, publisher, contributor, date,

type, format, identifier, source, language, relation, coverage and rights)

and is standardised as IETF RFC 5013, American National Standards

Institute/National Information Standards Organization Standard Z39.85-

2007, and International Organization for Standardization (ISO) Standard

15836:2009.

• Dublin Core Metadata Initiative (DCMI) Metadata Terms:4 the specifica-

tion contains all DCMI-maintained vocabularies (e.g. properties, vocabulary-

encoding schemas, syntax-encoding schemas, and classes) and also includes

the Dublin Core Metadata Element Set.

• Friend of a Friend:5 the specification contains vocabularies to link people

and information on the Web using classes (e.g. agent, document, online

account, organisation, person and project) and properties (e.g. account

name, age, current project, family name, first name, knows, member, past

project, primary topic, status and title).

• Simple Knowledge Organization System:6 the specification is a W3C recom-

mendation to share and link organisation systems on the Web using classes

(e.g. collection, concept, schema and ordered collection) and properties
2 https://lov.linkeddata.es/dataset/lov/
3 dce: http://dublincore.org/documents/dces
4 dcterms: http://dublincore.org/documents/dcmi-terms
5 foaf: http://xmlns.com/foaf/spec/20140114.html
6 skos: http://www.w3.org/2009/08/skos-reference/skos.html
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(e.g. alternative label, change note, definition, example, member, notation

and semantic relation).

• Creative Commons Rights Expression Language:7 the specification is used

to describe copyright licenses using classes (e.g. work, license, jurisdiction,

permission, requirement and prohibition), license properties (e.g. permit,

legal code and deprecation date) and work properties (e.g. attribution

name, attribution URL and use guidelines for the work).

• Schema.org vocabulary:8 the specification aims to provide metadata for

structured data on the Web (e.g. creative work, audio/video/image objects,

events, health and medical types, organisations, persons, places, products,

reviews, and actions) and was founded by the companies Google, Microsoft,

Yahoo and Yandex.

• Provenance (PROV) ontology:9 the specification is recommended by the

W3C to interchange and represent provenance on the Web using classes

(e.g. entity, activity, agent, collection, bundle, person, organisation and lo-

cation), properties (e.g. was generated by, was derived from, was attributed

to, used, had a primary source and was influenced) and restrictions (e.g.

ended at time, was invalidated by and was ended by).

• Basic WGS84 Geo Positioning:10 the specification provides the opportunity

to define geographic coordinates using WGS84 in longitude and latitude on

the Web.

In the later sections of this thesis, examples will be shown with the use of

some of the described RDF vocabularies, e.g. ‘DCMI Metadata Terms’, ‘PROV

ontology’ and ‘Basic WGS84 Geo Positioning’.
7 cc: http://creativecommons.org/ns
8 schema: http://schema.org/docs/about.html
9 prov: http://www.w3.org/TR/prov-o/
10 geo: http://www.w3.org/2003/01/geo/
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2.3.4.1 RDF Basics

To understand the principles of RDF, we will introduce knowledge for ontology de-

sign. The RDF requires expressions of simple statements called RDF triples that

are written in the form <subject><predicate><object>. For instance, triples

regarding a road network can be as follows:

<Kent Street> <is a> <road>

<Kent Street> <is located in> <Bentley>

<Kent Street> <has part> <Intersection A>

<University Boulevard> <is a> <Road>

<Intersection A> <is an> <Intersection>

<Intersection A> <has latitude> <–32.001275°>

<Intersection A> <has longitude> <115.887242°>

<Intersection A> <is part of> <University Boulevard>

Kent Street University 
Boulevard

Road

is 
a

is located in

Bentley

Intersection A

is an

Intersection

has 
latit

ude

has longitude

–32.001275°

–115.887242°

Road

is a

ha
s p

art

is part of

Figure 2.3: This graph shows a visualisation of eight sample triples.

Triples are simple structures combined using the subject, predicate and object

notation. Each triple can be visualised with a graph. For example, the sample

triples above regarding a road network are indicated in Figure 2.3, showing that
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‘Kent Street’ is a road in ‘Bentley’ and connected through ‘Intersection A’ with

the road ‘University Boulevard’. Another piece of information here is that the

intersection is located at ‘–32.001275°’ latitude and ‘115.887242°’ longitude.

The RDF supports linking to other external sources using URIs. For example,

instead of the literal11 ‘Kent Street’, the DBpedia entry ‘http://dbpedia.org/

resource/Kent_Street,_Perth’ can be used as a resource. Other triples from

the example above can also be replaced to enable machines to understand the

meaning of the data, such as what a ‘location’ is, what an ‘intersection’ is, what

a ‘road’ is, what ‘has part’ or ‘is part of’ means and what the coordinates in

‘longitude’ and ‘latitude’ are. The triples from above will now be rewritten with

URIs instead of literals where possible so that a connection to other documents

on the Web can be established:

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix ex: <http://example.org/> .

@prefix geo84: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

dbr:Kent_Street,_Perth a dbo:road ;

dcterms:Location dbr:Bentley,_Western_Australia ;

dcterms:hasPart ex:Intersection_A .

ex:University_Boulevard a dbo:road .

ex:Intersection_A a dbr:Intersection_(road) ;

geo84:lat –32.001275 ;

geo84:long 115.887242 ;

dcterms:isPartOf ex:University_Boulevard .

The previous example was written in the Turtle notation and introduced fur-

ther URI prefixes with a leading at (‘@’) sign, which is commonly used for better
11 A literal is a value that is not expressed as a URI, such as ‘–32.001275’.
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readability; this enables RDF statements to be written in a compact form (Beck-

ett et al., 2014). In this thesis, developed ontologies will be written in Turtle

notation, and, therefore, important Turtle syntax are introduced next:

• A number sign (‘#’) is used for comments.

# this is a comment

• An at prefix (‘@prefix’) is used to abbreviate a URI.

@prefix ex: <http://example.org/> .

• Angle brackets (‘<’ and ‘>’) are used to enclose URIs.

<http:www.example.org>

• A point (‘.’) is used to complete a statement.

ex:Intersection rdf:type owl:Class .

• A semicolon (‘;’) is used to define a series of predicates and objects.

ex:Unit rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf ex:Measurement .

• A comma (‘,’) is used to define a series of objects.

ex:Intersection rdfs:label "Intersection"@en ,

"Straßenkreuzung"@de .
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2.3.4.2 RDF Vocabulary

With RDF, the opportunity exists to define classes, properties and types. RDF-S

mainly adds the opportunity to express sub-classes, sub-properties, domains and

ranges (Brickley & Guha, 2014; Schreiber & Raimond, 2014; Hitzler et al., 2012).

It is a common practice to use a camel-case notation for better readability with

a leading lowercase letter for properties and a leading capital letter for classes,

as RDF properties and classes need to be defined as one term. For instance, in

camel-case notation, the class ‘sampleclass’ can be written as ‘SampleClass’, and

the property ‘sampleproperty’ can be written as ‘sampleProperty’.

Prefixes

Prefixes are used in two different forms. The first form uses a slash (‘/’) as the

final URI character. This means that an abbreviated URI can lead to another

document, such as ‘ex:test’, which will be processed as ‘<http://example.org/

test>’. The second form uses a number sign (‘#’) as the final URI character.

This means that the abbreviated URI will refer to specific content of a given

document. For instance, ‘owl:Class’ will be processed as ‘<http://www.w3.org

/2002/07/owl#Class>’. The following prefixes will be used in the examples in

this section:

@prefix ex: <http://example.org/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Classes and sub-classes

A class is a container to categorise things, e.g., in the context of this thesis, roads,

road signs, traffic signals, road stopping places and power lines. Sub-classes are

used to categorise things into sub-categories; for example, a ‘road edge’ can be

a sub-class of a ‘road’, and a ‘stop sign’ can be a sub-class of a ‘road sign’. The
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declaration of a ‘road’ that is a class and a ‘road edge’ that is a sub-class of a

‘road’ is introduced next:

ex:Road rdf:type owl:Class .

ex:RoadEdge rdfs:subClassOf ex:Road .

Properties and sub-properties

In ontology design, it is typical to define two types of properties, object properties

and datatype properties.

Object properties describe relations, such as ‘intersection A has road sign

stop’. Object properties can be categorised into sub-properties, e.g. ‘has stop

sign’ is a sub-property of ‘has road sign’. Data-type properties are used to define

literals, such as road names, object ids, geographic coordinates and dates.

The description of object property ‘has road sign’, which has the sub-property

‘has stop sign’ to declare that a stop sign is subordinate to a road sign, is defined

in the next example:

ex:hasRoadSign rdf:type owl:ObjectProperty .

ex:hasStopSign rdfs:subPropertyOf ex:hasRoadSign .

Furthermore, the definition that a ‘road name’ of a road is declared as a

data-type property is indicated next:

ex:RoadName rdf:type owl:DatatypeProperty .

Domains and ranges

Domains are used to restrict subjects to the definition of properties. For instance,

we can define that the object property ‘has stop sign’ is part of the domain

‘inventory’. Ranges are used for the restriction of property values. The following
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shows an example of the property ‘has stop sign’ in the domain ‘inventory’ and

specifies that the range of the property is within the range ‘road signs’:

ex:hasStopSign rdfs:domain ex:Inventory .

rdfs:range ex:RoadSigns .

2.3.5 Linked Data

The term linked data describes a set of methods for sharing and publishing struc-

tured data on the Web. This means that well-defined data are stored on the Web

in a machine-readable format and are linked to and from other external datasets.

The use of URIs and the HTTP is an elementary practice of linked data (Bizer

et al., 2009). Berners-Lee (2009) released a set of rules for publishing linked data

on the Web, which is interpreted next:

1. URIs are used to name things, such as intersections.

Example: www.example.com/data/roadNetwork/intersections/

2. Use an HTTP schema so that users can retrieve information on the Web.

Example: http://www.example.com/data/roadNetwork/intersections/

3. Useful information can be provided at a URI using the RDF, RDF-S and

SPARQL standards.

4. Other URIs can be linked so that users get access to more information. For

instance, with the use of the OWL attribute ’same as’ the information of

two documents can be compounded.

Example: subject: http://en.wikipedia.org/wiki/Eyre_Highway

predicate: http://www.w3.org/2002/07/owl#sameAs

object: http://wikitravel.org/en/Eyre_Highway

The rules for publishing data on the Web are also known as the ‘linked data

principles’ (Bizer et al., 2009).
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2.3.6 Ontology Reasoning

The Semantic Web supports that knowledge can be received after reasoning an

ontology (Ding et al., 2005). An ontology reasoner solves ontology problems,

evaluates semantic rules and delivers information as knowledge (Parsia et al.,

2017); commonly used ontology reasoners are HermiT,12 Konclude,13 ontop14 and

Pellet.15 Semantic rules can be defined in an ontology to map individuals to

properties and classes. However, semantic rules are not processed by default.

This means that a reasoner needs to process (reason) an ontology first in order

to be able to make changes to an ontology, e.g. set properties and classes. In

contrast, if not explicitly saved, a reasoned ontology will be set to its initial state

once a reasoner is deactivated.

A repository to test ontology reasoners, for consistency, classification and

realisation, with many different problems from various domains, such as logic,

mathematics, computer science, science and engineering, social sciences, and

arts and humanities, is available with the Thousands of Problems for Theorem

Provers (TPTP)16 problem library (Sutcliffe, 2017). The TPTP library defines

217 Semantic Web problems (as of October 2020) to be solved against the Friend

of a Friend 17 ontology.

2.3.6.1 Semantic Web Rule Language

An ontology reasoner can process semantic rules that are written in SWRL to

edit an ontology, such as by moving individuals from one class to another, setting

properties and classes and changing literal values. For example, a semantic rule

for a road network could include the following statement: if a literal ‘roadtype’

contains the value ‘road’, then its object will be set to the class ‘road’. The
12 http://www.hermit-reasoner.com
13 http://derivo.de/en/products/konclude/
14 http://ontop.inf.unibz.it
15 https://github.com/stardog-union/pellet
16 http://tptp.org
17 http://www.foaf-project.org
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SWRL notation of the example is shown next, assuming that ‘ex:’ is a prefix for

‘<http://www.example.org/>’ and ‘swrlb:’ is a prefix for<http://www.w3.org/20

03/11/swrlb#>:

ex:roadtype(?a, ?b) ∧ swrlb:matches(?b, "road") -> ex:Road(?a)

The SWRL rules can be compared to conditional statements from common

programming languages (e.g. Java, Python, C++ and others), with the limitation

that only a true condition can be defined. Thus, if a SWRL rule is true, then

an action, such as setting a class or a property, will be conducted. The SWRL

language provides a set of approximately 79 built-ins that can be used for the

definition of semantic rules, e.g. to compare dates, times, durations, numbers

and strings, and to evaluate mathematical expressions (Horrocks et al., 2019). A

selection of SWRL built-ins that will be used for the creation of new semantic

rules for the road asset data conflation approach of this thesis is introduced next:

• swrlb:abs(?a, ?b) provides in the first argument the absolute value of the

second numeric argument.

swrlb:abs(?a,−5.1) −→ ?a = 5.1

• swrlb:contains(?a, ?b) returns true if the first argument contains the case-

sensitive value of the second argument.

swrlb:contains("teststring", "stst") −→ true

swrlb:contains("teststring", "sTsT") −→ false

• swrlb:containsIgnoreCase(?a, ?b) returns true if the first argument contains

the case insensitive value of the second argument.
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swrlb:containsIgnoreCase("teststring", "stst") −→ true

swrlb:containsIgnoreCase("teststring", "sTsT") −→ true

• swrlb:equal(?a, ?b) returns true if the first argument is equal to the second

argument.

swrlb:equal("teststring", "teststring") −→ true

swrlb:equal("teststring", "string") −→ false

swrlb:equal(1000, 1000) −→ true

swrlb:equal(1000, 1000.1) −→ false

• swrlb:notEqual(?a, ?b) returns true if the first argument is not equal to the

second argument.

swrlb:notEqual("teststring", "teststring") −→ false

swrlb:notEqual("teststring", "string") −→ true

swrlb:notEqual(1000, 1000) −→ false

swrlb:notEqual(1000, 1000.1) −→ true

• swrlb:lessThanOrEqual(?a, ?b) returns true if the first numeric argument

is less than or equal to the value of the second argument.

swrlb:lessThanOrEqual(10, 50) −→ true

swrlb:lessThanOrEqual(100, 50) −→ false

2.3.7 Open Geospatial Consortium Simple Features Access

The Open Geospatial Consortium (OGC) Simple Features Access standard spec-

ifies names and definitions of simple geographic features, e.g. points, curves, sur-

faces and geometry collections, and is standardised as ISO Standard 19125:2004
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(Herring et al., 2011). A feature can be anything in the real world with a defined

spatial location, such as points, line strings, intersections and traffic lights (Battle

& Kolas, 2012). For instance, we assume that an arbitrary intersection has an

area of 200 m2 but that location is defined by a simple features point in longitude

and latitude. For this thesis, the relevant features are points, line strings and

multi-line strings that can be written as well-known text (WKT),18 The exam-

ples in this section will use the prefixes ‘ex’ to link to a sample ontology, ‘sf’ to

link to the OGC simple features ontology and ‘geo’ to link to the GeoSPARQL

ontology, as indicated next:

@prefix ex: <http://example.org#> .

@prefix sf: <http://www.opengis.net/ont/sf#> .

@prefix geo: <http://www.opengis.net/ont/geosparql#> .

Points are zero-dimensional objects that have an x-coordinate and a y-coordi-

nate, i.e. longitude and latitude, respectively (Herring et al., 2011). The definition

of a simple features WKT point for the sample coordinates ‘115.7°’ longitude and

‘–31.6°’ latitude is shown next:

ex:PointCoordinate_1 a sf:Point ;

geo:asWKT "Point(115.7 –31.6)"ˆˆgeo:wktLiteral .

In the example above, the predicate ‘geo:asWKT’ was used to describe the

WKT point object that followed, which was parsed as a ‘geo:wktLiteral’19 in the

‘ˆˆ’ notation that defined a literal relation to the GeoSPARQL ontology. A line

string is a linear interpolated curve with line segments at each vertex pair. A

line is defined if a line string has exactly two points. A collection of multiple line
18 A textual representation within OGC Simple Features for a unified definition of geometries,

such as for points, line strings, multi-points, multi-line strings, multi-polygons, geometry
collections, polyhedrons and tetrahedrons.

19 As mentioned earlier, a literal is a value that is not represented as a URI, such as a piece
of text or a number.
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strings within a single object is called a multi-line string (Herring et al., 2011).

The following example shows both, the definition of a WKT line string and the

definition of a WKT multi-line string with arbitrary sample coordinates:

ex:LineString_1 a sf:LineString ;

geo:asWKT "LineString(115.7 -31.6, 115.9 -31.5, 115.7 -31.4)"

ˆˆgeo:wktLiteral .

ex:MultiLineString_1 a sf:MultiLineString ;

geo:asWKT "MultiLineString((115.7 -31.6, 115.9 -31.5), (115.7

-31.4, 115.4 -31.2))"ˆˆgeo:wktLiteral .

2.3.8 SPARQL and GeoSPARQL

Sometimes, it is necessary to retrieve specific information from an ontology. With

SPARQL, it is possible to query ontologies and to retrieve information in a syntax

that is similar to Structured Query Language (SQL) statements using ‘SELECT’

and ‘WHERE’ expressions (Battle & Kolas, 2012). Moreover, GeoSPARQL is an

OGC standard for the Semantic Web that extends SPARQL for unified geospatial

data modelling, indexing and querying. With such queries, a user can ask for

certain things, such as whether an individual has a geometry (e.g. points and

line strings). The related query statement is as follows:

SELECT ?element

WHERE { ?element geo:hasGeometry ?location . }

The OGC GeoSPARQL provides more RDF vocabulary to define OGC Simple

Features (e.g. ‘geo:asWKT’) (Battle & Kolas, 2012). For instance, if RDF in-

dividuals contain OGC Simple Features and OGC GeoSPARQL attributes, then

topological relations (e.g. equals, disjoint, intersects, touches, within, contains,

overlaps and crosses) can be identified with queries (Perry & Herring, 2012).
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The next example declares two geospatial individuals (‘ex:individuals_A’ and

‘ex:individual_B’) that are defined as OGC Simple Features line strings, and a

GeoSPARQL query to determine if individual ‘ex:individual_A’ has any crossing

line strings:

1. Design an ontology that declares two line strings in Turtle notation:

@prefix ex: <http://www.example.org/> .

@prefix geo: <http://www.opengis.net/ont/geosparql#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix sf: <http://www.opengis.net/ont/sf#> .

ex:individual_A rdf:type owl:NamedIndividual;

geo:hasGeometry ex:LineString_1 .

ex:individual_B rdf:type owl:NamedIndividual;

geo:hasGeometry ex:LineString_2 .

ex:LineString_1 a sf:LineString ;

geo:asWKT "LineString(117.1 -31.2, 117.3 -31.1,

117.4 -31.0)"ˆˆgeo:wktLiteral .

ex:LineString_2 a sf:LineString ;

geo:asWKT "LineString(117.1 -31.0, 117.4 -31.2,

115.7 -31.4)"ˆˆgeo:wktLiteral .

2. Define an GeoSPARQL query statement to identify crossing line strings:

PREFIX ex: <http://www.example.org/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
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PREFIX sf: <http://www.opengis.net/ont/sf#>

SELECT ?p

WHERE {

ex:individual_A geo:hasGeometry ?feature .

?feature a sf:LineString .

?feature geo:asWKT ?mgeo .

?p a sf:LineString .

?p geo:asWKT ?pgeo .

FILTER(geof:sfCrosses(?mgeo, ?pgeo))

}

Prefixes in SPARQL do not require a leading at sign (‘@’) compared to the

Turtle notation. The prefix ‘geof:’ is used to enable GeoSPARQL filter functions;

as the example above, ‘geof:sfCrosses’ was adopted to determine if the line string

of ‘ex:individual_A’ was crossed by another line string, as visualised in Figure

2.4. The example query from above can be interpreted as follows:

117.1, -31.2

117.3, -31.1

117.4, -31.0117.1, -31.0

117.4, -31.2

115.7, -31.4
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Figure 2.4: Graph of the line strings ‘LineString_1’ and ‘LineString_2’.
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1. Select value the variable ‘?p’ as the return value.

2. The variable ‘?feature’ is related to ‘ex:individual_A’ and requires ‘ex:indivi-

dual_A’ to be a line string, with its WKT value available in the variable

‘?mgeo’.

3. The variable ‘?p’ is a line string individual with its WKT individual avail-

able with the variable ‘?pgeo’.

4. If the GeoSPARQL crosses function (‘geof:sfCrosses’) returns a value for

the WKT line strings ‘?mgeo’ and ‘?pgeo’, then a crossing line string exists

between the individual ‘ex:individual_A’ and a related individual that will

be returned in the variable ‘?p’.

As seen in the example, a SPARQL query can be used, for instance, to identify

whether an overhead power line crosses a road.

2.3.9 Data Provenance

Provenance information provides context and motivation, which leads to the pro-

duction of data. More specifically, provenance informs users about various data

life cycle information, such as the origin, updates, handling, use cases, validations

and life span. The W3C recommends the PROV-O ontology for linking prove-

nance to the Semantic Web (Lebo et al., 2013). The PROV-O data model uses

three base classes to define data provenance, as visualised in Figure 2.5, namely:

agent, activity and entity.

EntityActivityAgent

Figure 2.5: Standard visualisation of a PROV-O agent, activity and entity.

An agent is an instance that can be in charge of the activation of activities

as well as the creation of entities and activities from other agents. For instance,
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if a dataset is provided by an organisation, then the organisation can act as an

‘agent’, as they are responsible for the data quality (Moreau & Missier, 2013).

An activity describes the occurrence of something that collaborates with en-

tities in a period. This can be a process or algorithm that is activated to use,

generate, update or modify entities. For example, if a regulatory sign is a part of

an intersection, then a property can be set to assign the sign to the intersection.

An entity refers to a defined thing20 whose provenance has to be described.

An entity’s lifetime is limited by its creation and invalidation attributes. For

instance, assume a regulatory sign entity can be created as a result of a broken

traffic signal and can be invalidated after the traffic signal has been repaired.

The following prefixes will be used in this section:

@prefix : <http://example.org/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

The PROV-O ontology contains approximately 30 classes and 50 properties

(Lebo et al., 2013). Not all of those classes and properties can be described in the

scope of this thesis. Therefore, only the properties relevant to this dissertation and

their inverses will be explained. For instance, a simplified provenance expression

can be ‘A -> provenance -> B’, with its inverse as ‘B -> inverse provenance ->

A’. The provenance attributes required to understand the developed provenance

models of this thesis are explained next:

• prov:used indicates the usage of an entity by an activity. The inverse of

this property is prov:usedBy. The following example defines the activity

‘:createRoadSign’, which uses the entity ‘:RoadSignData’ and its inverse.

20 A thing is a kind of a subject that exists in the real world (e.g. roads, roundabouts, street
lights and road signs), in digital form (e.g. datasets and graphs) or as a concept (e.g.
planned road works).

35



CHAPTER 2. BACKGROUND: SEMANTIC WEB

:createRoadSign a prov:Activity ;

prov:used :RoadSignData .

:RoadSignData a prov:Entity ;

prov:wasUsedBy :createRoadSign .

• prov:wasGeneratedBy indicates the creation of an entity. The inverse of

this property is prov:generated. The next example defines the activity ‘:cre-

ateRoadSign’, which creates the entity ‘:RoadSign’ and its inverse.

:createRoadSign a prov:Activity ;

prov:generated :RoadSign .

:RoadSign a prov:Entity ;

prov:wasGeneratedBy :createRoadSign .

• prov:wasAssociatedWith describes which agent is responsible for an activity.

The inverse of this property is prov:wasAssociateFor. The next example

defines the activity ‘:createRoadSign’, which is associated with the agent

‘:Authority’ and its inverse.

:createRoadSign a prov:Activity ;

prov:wasAssociatedWith :Authority .

:Authority a prov:Agent;

prov:wasAssociateFor :createRoadSign .

• prov:wasAttributedTo describes the relation of an entity to an agent. The

inverse of this property is prov:contributed. The next example defines the

entity ‘RoadSignData’, which is attributed to the agent ‘:Authority’ and its

inverse.
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:RoadSignData a prov:Entity ;

prov:wasAttributedTo :Authority .

:Authority a prov:Agent;

prov:contributed :RoadSignData .

• prov:hadPrimarySource refers to another entity to describe that significant

content has been used from that source. The inverse of this property is

prov:wasPrimarySourceOf. The next example defines the entity ‘:Road-

Sign’, which uses data from the entity ‘RoadSignData’ and its inverse.

:RoadSign a prov:Entity;

prov:hadPrimarySource :RoadSignData .

:RoadSignData a prov:Entity ;

prov:wasPrimarySourceOf :RoadSign .

• prov:atLocation describes the geographical position of an identifiable place,

which can be either a line string, a multi-line string, a point, an address, a

landmark or a non-geographical place (e.g. directory, row or column). The

following example defines a location with the entity ‘:Location’ of an entity

‘:RoadSign’, which is generated by the entity ‘:createRoadSign’.

:Location a prov:Entity;

prov:hadPrimarySource :RoadSignData ;

prov:wasGeneratedBy :createRoadSign .

:createRoadSign prov:generated :Location .

:RoadSign prov:atLocation :Location .
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A graph is a simple visualisation to understand the provenance of Semantic

Web documents, as a text representation can quickly become complicated. Figure

2.6 shows a PROV-O graph that contains the previously introduced provenance.

prov:hadPrimarySource

prov:used :createRoadSign

prov:wasUsedBy

:RoadSignData

prov:wasPrimarySourceOf

:RoadSign prov:wasAttributedTo

prov:contributed
:Authority

prov:wasAssociateFor

prov:wasAssociatedWith

:Location

prov:atLocation

prov:hadPrimarySource prov:generated

prov:wasGeneratedBy

prov:wasGeneratedBy

prov:generated

Figure 2.6: Graph to indicate the relation of the introduced provenance classes
and properties.

2.4 ITS

Most Semantic Web technologies that include road infrastructure are matched

to ITS, whose definition is standardised by the ISO/TC 204 standard. Overall,

the application of ITS focuses on the task of improving road safety by integrat-

ing wireless communication technologies into road infrastructures while enabling

information exchange between sensor-based measurement units and transport au-

thorities. A typical ITS application wirelessly informs road users about hazards

in their direct environment (Desertot et al., 2012). For example, an authorised

road user sends enabled device information about an oil slick at a highway exit

to a responsible transport authority through an ITS. The contacted transport

authority can interact in real time and inform car users in the related danger zone

through an ITS message about the oil slick. Additionally, an external contractor

can be ordered automatically via a separate ITS message to remove the oil slick.
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2.4.1 Overview of ITS Developments

The following overview of current ITS research delivers an introduction to the

closely related activities of this dissertation. Although this thesis will not employ

sensor-based systems that can enable wireless communication with transport au-

thorities, the findings often contain traffic situations and route-planning-related

content and, therefore, are included in this section.

Lorenz et al. (2005) presented an ontology for transport networks (OTN)

that aimed to encode a given Geographic Data File (GDF)21 ontology into the

OWL format. Their ontology model supported a variety of road network classes,

such as roads, roundabouts, intersections and junctions. For instance, they used

their ontology system to simplify the visualisation of traffic network elements into

Scalable Vector Graphics.

Fernandez et al. (2015) introduced an ontology-based system for driving as-

sistance in different traffic situations. They considered the connections between

a vehicle’s travel route, the weather and traffic regulations in Japan. Semantic

rules were written in SWRL, and the ontology was reasoned with Pellet.22 With

SPARQL queries, they were able to determine the next action a vehicle driver

should take to reach the target, such as reduce their speed, turn left/right or go

straight. Also, advice was given to the driver in certain situations to turn on the

headlights avoid puddles or flowing water.

Fernandez et al. (2016) proposed a system that used sensors installed at vehi-

cles, bridges, roads and road signs for a safer driving experience. Their ITS used

an ontology model based on Fernandez et al. (2015) to describe and classify vehi-

cles (e.g. public, private and priority), road infrastructure assets (e.g. roads, road

markings, lanes, signs and parking locations) and an interconnected sensor net-

work (e.g. measurement properties, observations and sensor input/output). For
21 The GDF format is used in ITS applications for the specification of road and road-related

information (e.g. conceptual data models, logical data and physical encoding formats)
(International Organization for Standardization, 2011).

22 Pellet is an open-source OWL description logics reasoner written in Java (Sirin et al., 2007).
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example, their dynamic system was able to calculate the arrival time of a vehicle

considering multiple aspects, such as car speed and traffic signal duration.
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Figure 2.7: Example of a traffic situation at a complex intersection with multiple
roads, lanes, vehicles and regulatory signs (Hülsen et al., 2011).

Hülsen et al. (2011) modelled an ontology to reason out right-hand traffic

situations for cars, motorbikes and heavy vehicles at complex intersections. The

example in Figure 2.7 shows a complex intersection with five roads, 11 lanes,

six vehicles and five regulatory signs. They managed to query their ontology to

avoid possible accidents at an intersection. For instance, in the context of this

example, identifying vehicle 4 has a right-turn conflict with vehicle 5; vehicle 5

has the right of way before vehicle 4; vehicle 3 has to give way to vehicle 1; vehicle

1 has no yield; and vehicles 1 and 3 both have an existing future connection to

lane 3 of road 4 once they have turned.
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Zhao et al. (2015, 2017) created an ontology-based advanced driver assis-

tance system for autonomous vehicles to increase driving safety. Their system

was able to detect speeding while taking into account speed limit information

and velocity sensor data converted into RDF streams. The use of Continuous

SPARQL (C-SPARQL)23 queries enabled Zhao et al. (2015, 2017) to evaluate the

maximum vehicle’s speed continuously in a range of 500 ms. Their knowledge-

based approach included the automated driving decisions stop, move to left and

give way at uncontrolled intersections following the right-of-way rule. According

to their data repository in ‘Toyota Technological Institute: Core ontologies for

safe autonomous driving’ (TTI, 2015) they did not use a geographical localisa-

tion data standard for the vehicles and road infrastructure as is available with

the OGC simple features, as specified by Herring et al. (2011).

Marasovic & Marasovic (2010) proposed a concept to design service routes

on a daily basis with Semantic Web technologies. Their road segment domain

ontology was similar to the model of Niaraki & Kim (2009) and it contained the

same quantitative criteria of road, vehicle and unit and slightly differed qualita-

tive criteria that added service and season but removed tourist, user, safety and

facility. Marasovic’s system informed road users through wireless devices about

road situations to prevent accidents and traffic jams. For instance, if a natural

event, such as a landslide, tree on the road or deep snow, caused a road closure,

then a road authority would be informed by a road user about the circumstances

and would send the information to a news feed so that the nearest proper service

provider would receive the information and handle the problem. Unfortunately,

no further known publications have been produced by this group regarding the

implementation of this system.

Provine et al. (2004b) and Schlenoff et al. (2004) introduced an ontology for

autonomous vehicles to estimate the damage after a collision with surrounding

objects. Provine et al. (2004a) showed that ontology reasoning can inform about
23 C-SPARQL is a language that extends SPARQL to query continuously changing RDF

stream data (Barbieri et al., 2010).
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collision consequences using a cost function that determines the best path as the

path with the cheapest cost to reach the target. Lane changes and damage risk

objects increase the path’s cost with different weights. For instance, their ontology

reasoning approach determined that the cost of a lane change is small concerning

the cost of a collision between a motorcycle and a brick. In comparison, if a

large vehicle with high rigidity (e.g. an off-road vehicle) hit the same brick the

motorcycle hit, then the collision would cause no damage and, therefore, no extra

costs after striking the object.

The reviewed literature of this section summarised various use cases with on-

tologies involved in ITS research activities. It has been identified that common

practices include the use of Protégé to model ontologies, Pellet to reason ontolo-

gies and SWRL to define semantic rules. The road network ontologies described

in the reviewed literature often shared a similar layout, which principles (e.g.

model the road network in a hierarchical asset order) can be adapted for the road

network ontology design of this thesis. To the best of the author’s knowledge

none of the reviewed scientific documents described the use of semantic rules

for the identification of same road asset data from heterogeneous data sources.

The significant contribution of this work will include an ontological road net-

work representation that enables a trust score to weight the trust of a road asset

data source. The aspect of a trusted road network data source is new and has

not been investigated by others. The findings of the ontological road network

representation will be further employed as a solid base for route planning.

2.5 Route Planning

In their simplest form, route planning approaches identify the shortest route be-

tween a starting point and a destination. This section will review the literature

regarding route planning that positively influenced the route planning approach

of this thesis. Niaraki & Kim (2009) worked on a personalised route planning ap-

proach with a multi-criteria decision technique. The technique they used followed
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a hierarchical structure and used a pairwise criteria comparison to create a road

segment impedance model that took into account distance, velocity or traffic and

also considered personal information, tourist preferences, road segment length

and path-allowed vehicle types. They covered a road network of approximately

55,000 km and included additional data, such as gas stations, seaside areas, jun-

gles, weather and road traffic information. Although their approach compared

the shortest route with a route that was identified by their multi-decision system,

which supported various features, such as current speed, weight, fuel capacity and

shipment, they did not mention whether a certain vehicle type (e.g. motorcycle,

car or tourist bus) influenced the path selection.

Szwed et al. (2012) presented a route planning method that was able to use

ontologies and semantic rules to select the best route planning algorithm, such as

exact, approximate and greedy regarding a current traffic situation. For instance,

if speed discrepancies were observed on a track, then their ontology suggested an

alternative route to reach the target. In harsh winter conditions, they selected a

greedy algorithm that suggested driving on main roads.

Houda et al. (2010) and De Oliveira et al. (2013) worked on a public trans-

portation ontology regarding journey planning. Their approach was able to con-

sider buses, trams, metros and trains as transportation methods and passengers’

points of interest to reach the final destination. They implemented a rule-based

journey pattern with the use of SWRL that enabled path planning for weekdays,

festival days, and travel behaviours considering shopping, leisure activities, walk-

ing time and covered station areas. Their SWRL-based ontology reasoning system

was able to classify these patterns into passengers’ relevant requirements, such as

connection points with shelter, no stopovers, leisure and interesting facilities in

the surrounding area.

Corsar et al. (2015) conceptualised a transport disruption ontology frame-

work24 to describe disruptive impacts on travel mobility, such as road closures.
24 http://purl.org/td/transportdisruption
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Their framework enabled modelling traffic-related events and supported the input

parameters event type, location, duration, relation to other events and custom

impacts entered by agents. For instance, while planning a journey, a user would

receive information about road work and related road closures regarding their

journey from A to B and how much longer the journey would take if a disruption

occurred.

Faaß (2015) developed, in the scope of his master’s thesis, an ontology-based

route planning system for OSM data that considered facilities for drinking, shop-

ping, food, banks, entertainment, health, hotels and miscellaneous locations and

their opening hours. For instance, if a user needed to use a petrol station on their

way to their destination, then it would be a hard requirement that the petrol

station be open upon arrival.

The in this section reviewed literature summarised available route planners

driven by Semantic Web Technologies. None of the reviewed scientific documents

described to include live data into their route planning approach, such as possible

with the route planner of this thesis with road closures and suburb information.

A significant contribution with the route planner of this dissertation includes the

consideration of overhead powerlines as no one has treated that before.

2.5.1 Route Planning Algorithm

To reach a target destination from a start point is a simple task for humans

when looking at a map. In computer science, optimal route planning algorithms

are a good example of merging algorithms with the real world (Delling et al.,

2009). Many different algorithms for route planning exist, such as breadth-first,

depth-first, A*, D*, ALT, contraction hierarchies, arc flags, Bellman Ford Moore,

Floyd Warshall, Greedy, global route planning and dynamic highway-node rout-

ing. Bast et al. (2016) presented a comprehensive overview of the algorithms

for route planning in transportation networks. It bundled research from scien-

tists that worked for global companies, such as Apple, Esri, Google, MapBox,
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Microsoft, Nokia, PTV, TeleNav, TomTom and Yandex, on route-service-related

projects. The most basic idea of a route planning algorithm is to find the shortest

path. One of the most famous shortest path algorithms is the approach of Edsger

Wybe Dijkstra that sums the length of road edges to find the shortest path (see

(Dijkstra, 1959)).

2.5.1.1 Dijkstra’s Shortest Path Algorithm

The identification of the shortest path is a basic problem in large-scale network

applications (Cherkassky et al., 1996; Gallo & Pallottino, 1988). Dijkstra’s (1959)

shortest path algorithm is the reference algorithm for route planning and is refer-

enced in most of the reviewed literature (e.g. (Lauther, 2006; Wang et al., 2005;

Goldberg et al., 2007; Geisberger et al., 2008; Schultes & Sanders, 2007; Delling

et al., 2011; Bast et al., 2016; Szwed et al., 2012; Madduri et al., 2006; Edmonds

et al., 2006; Dibbelt et al., 2015)). It is a node-based approach with non-negative

edge lengths. The algorithm provides the shortest path from start node s to every

other node j in a graph. Each node must be iterated once in an order depending

on the edge length. A priority queue (Q) is maintained for the nodes, sorted by

their temporary distances from s. We assume that distance λ from source node

1 to each node j is infinity, except for the source itself. The statement

λ(j) =

∞ for all j 6= 1

0 otherwise.
(2.1)

can be used in this context for a better visualisation of the initial situation. No

nodes are labelled ‘visited’ before the first iteration, i. In the first iteration,

distance 0 (node s to s) is added to Q, and the algorithm extracts from node

s the minimum distance λ to every neighbour of s. Then, node s will be set

to visited, and node j with the nearest distance to s will move up Q to the

second position. In each further iteration, a not-visited node j with the nearest

distance to s will be nominated, from which the distances to its neighbours will
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be calculated. Once a node is scanned, its distance to start node s, dist(node,

length), is true, and Q will be updated (Bast et al., 2016).
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F

D

B

C

A

643 m

527 m

616 m
528 m

923 m365 m

340 m

Start

Destination

X Node

Edge

Figure 2.8: Graph that shows six nodes (A–F), a start node, an end node, seven
edges and the resulting edge distance between connected nodes.

Consider the graph in Figure 2.8 that shows six nodes (A–F), with start node

A and destination node D highlighted in green and orange, respectively. The

distances between connected nodes are written next to each edge. One can see,

that it is simple to identify that the shortest path is in the order A-F-E-D. In

comparison, machines have to consider all possibilities to determine the shortest

path efficiently. The processing of Dijkstra’s algorithm to determine the shortest

path from node A to all other nodes requires seven stages (see Figure 2.9). The

stages are as follows:

Stage 1: The distance from node A to itself is set to zero, and the other

distances from node A are set to infinity.

Stage 2: Node A is labelled as visited, and the distances from its neighbours

(nodes B and F) are identified. Node F has a distance of 340 m from node
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Figure 2.9: Dijkstra algorithm applied to a graph with six nodes (A–F) with
determined distances from start node A. The destination node is D, and the
graph shows all distances from node A ordered in a priority queue.

A and will be nominated as the next to visiting node, as it has the shortest

distance.

Stage 3: Nominated node F will move the priority queue up to the second

position. Then, the neighbours’ distances (nodes A and E) will be calcu-

lated, and node F will be set to visited. Node B has the shortest distance

with 643m and will be nominated as the next visiting node.

Stage 4: Node B remains in its position in the priority queue, as it is in the

right position. Then, the distances to its neighbours (nodes A, C and E)

will be calculated, and node B will be set to visited. The path from node A

to node E goes through node F, which is indicated in the top-right corner

of the cell. Node E will be further nominated as the next visiting node.
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Stage 5: Node E remains in its position in the priority queue. Then, the

distances to its neighbours (nodes B, D and F) will be calculated, and node

E will be set to visited. The path from node A to node C goes through

node B. Node C will be nominated as the next visiting node.

Stage 6: Node C remains in its position in the priority queue. Then, the

distances to its neighbours (nodes B and D) will be calculated, and node C

will be set to visited. The path from node A to node D goes through nodes

E and F. Node D will be nominated as the next visiting node.

Stage 7: Node D remains in its position in the priority queue. The path to

its neighbours (nodes E and C) will be calculated. As all nodes have been

visited, node D will be set to visited, and the processing of the shortest

path from node A to every other node is completed.

After processing Disjktra’s algorithm, it has been computed that the shortest

path from node A to node D is 1,233 m. The best way to read the graph is to

start at node D. Here, we can see that the order D-E-F-A has been identified,

which is the same (reversed) result as our initial visual inspection above.

Note: there is ongoing research on speed-up techniques regarding Dijkstra’s

algorithm which are up to 3 million times faster than the original code. Each of

these techniques requires pre-processing. If a speed-up technique is developed,

then the run-time comparison and memory usage will commonly be evaluated

against Dijkstra’s algorithm (Delling et al., 2009).

2.5.1.2 Edge Weight

In its simplest form, an edge’s weight is just represented by the distance between

two nodes. In the past, several studies have sought to identify additional con-

straints that can be parsed into a function that defines an edge’s weight. Winter

(2002) remodelled a graph by adding nodes and edges so that turning costs could

be taken into account. Dean (2004) presented a framework that considered the
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edge arrival time for predictable travel times, such as rush hour. Baum et al.

(2014) optimised a cost function for electric vehicles that considered road edge

altitude so that an electrical vehicle’s battery could be charged while driving

downhill. Overall, cost functions are used to specify the weight of an edge. For

instance, if speed limit v and edge length s are given, then travel time

t =
s

v
(2.2)

can be used instead of distance as the edge weight. In this thesis, a route will

be planned concerning the edge weight configurable for distance and travel time,

and additional constraints, such as overhead power lines, turning circles, traffic

signals, regulatory signs and rail crossings will be taken into account in a cost

function. To the best of the author’s knowledge, the concept of considering

overhead power lines which requires integrating data from a different agency, is

new and has not yet been done by others.

2.6 Heavy Vehicles on Roads

The leading cause of fatal accidents induced by heavy vehicles is electrocution due

to contact with overhead power lines (Koustellis et al., 2011; Crow, 2009; Cawley

& Homce, 2003). The clearance between a road and an electrical conductor

in Australia is regulated through the voltage. Below 1 kV, the clearance to

the ground must be at least 5.5m, and from 1–33 kV, the clearance must be

above 6.7m for vehicles with a maximum height of 4.6m (Seneviratne, 2015). In

Western Australia, heavy mobile plants came into contact with overhead power

lines 47 times between 1995 and 1999, and two accidents (one of them with a death

involved) took place in 2000 when a crane operated too close to an overhead power

line (Torlach, 2001). Between 1998 and 2008, a total of 74 contacts with overhead

power lines were reported (Ridge, 2008), and 26 contacts occurred between 2009
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and 2018 (Department of Mines, 2019). The accidents took place in the same

state.

Ongoing climate change and the resulting extreme weather conditions (e.g.

heatwaves, bushfires and extensive rainfall) harm a roads’ usage. Roads are

being closed and are inoperable due to floods and bushfires (Chhetri et al., 2012).

Therefore, this work will enable the consideration of live information on road

closures and minimise the occurrence of crossing overhead power lines with roads

in the route planner of this thesis.

2.7 Chapter Summary

With the availability of publicly accessible government data, the Semantic Web

has the potential to become one of the key technologies for solving data harmon-

isation problems. By integrating data provenance, it is possible to keep track of

data origin and use cases. Nevertheless, Semantic Web technologies are often used

in ITS to enable communication between various interfaces. A few approaches of

applied Semantic Web technologies exists regarding route planning. Considering

heavy vehicles, for example, no one has ever provided avoidance of power lines

for route planning.

This chapter reviewed relevant work regarding the content of this thesis. The

concept of data harmonisation was identified and its use by governments was re-

vealed. Semantic Web technologies were introduced in detail, meaning that RDF,

ontologies, OWL, SWRL and SPARQL basics were explained with examples to

further follow up with the arrangements in this thesis. Then, ITS and route

planning literature that used Semantic Web technologies as a translator between

various systems was reviewed. In the scope of route planning, Dijkstra’s shortest

path algorithm was further explained. Examples of heavy vehicles colliding with

overhead power lines were shown, and the impact of weather conditions on route

planning was indicated.
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Datasets

3.1 Chapter Introduction

In this chapter, the road network datasets employed in this thesis will be selected.

The data selection will include datasets from MRWA, Landgate, Western Power,

OSM and DBpedia.

3.2 Data Selection

A road network consists of many different road assets, e.g. road sections, round-

abouts, intersections, road signs, rail crossings and traffic signals, that are linked

together into a complex road network representation. The road asset datasets

presented in this thesis are either based on quality-controlled ground surveys

from MRWA and Landgate or collected from the OSM community on a trusted

database.

MRWA data

Main Roads Western Australia provides most of the road asset data employed in

this thesis, as summarised in the following list:

• Road network: the dataset contains a centreline representation of all state

and local roads controlled by MRWA divided into road sections, whereby
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an intersection is used as a road section separator. For instance, if a road

has four intersections in total between its start and its end, then the road

can be divided into five road sections. Source: http://catalogue.data.w

a.gov.au/dataset/mrwa-road-network

• Intersections: the dataset contains intersections that are extracted from

MRWA’s road information system and describes the location at which a

road junction with two or more roads meet or cross. Source: http://cata

logue.data.wa.gov.au/dataset/mrwa-intersections

• Regulatory signs: the dataset is a collection of road traffic regulatory signs

operated by MRWA. In this thesis, the relevant regulatory signs are ‘stop’

and ‘give way’. Source: http://catalogue.data.wa.gov.au/dataset/m

rwa-signs-regulatory

• Traffic signals: the dataset contains the locations of traffic signals for pedes-

trian traffic and vehicle control at intersections and roads that are controlled

and maintained by MRWA. Source: http://catalogue.data.wa.gov.au

/dataset/mrwa-traffic-signal-sites

• Road stopping places: the dataset contains the location of roadside stopping

places for cars and heavy vehicles in Western Australia. Source: https:

//catalogue.data.wa.gov.au/dataset/mrwa-road-stopping-places

• Road closures: the dataset contains information on currently closed roads

in the Western Australian road network. Source: https://catalogue.da

ta.wa.gov.au/dataset/mrwa-road-closures-closed

• Rail crossings: the dataset contains the locations of rail crossings on public

access roads in Western Australia. The dataset has been selected because

train rails can include a traction power network to supply an electrified rail

network. Source: https://catalogue.data.wa.gov.au/dataset/mrwa-

rail-crossings
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• Speed limits: the dataset contains information on the maximum travel speed

allowed on a road. The speed limit information ranges from 10 km/h to

110 km/h in steps of 10 km/h, and a further data value, ‘50km/h applies in

built-up areas or 110km/h outside built up areas’, is present in the dataset.

Source: http://catalogue.data.wa.gov.au/dataset/mrwa-legal-spee

d-limits

Landgate data

The Landgate ‘LGATE-012’ roads dataset contains extracted road centrelines,

roundabouts and connectors. The data mostly cover the area of the MRWA

road network dataset and have been collected independently. Source: https:

//catalogue.data.wa.gov.au/dataset/roads-lgate-012

Western Power data

The dataset ‘WP-031’ contains the approximate locations of the overhead power

line routes of Western Power’s distribution network. Source: https://catalogu

e.data.wa.gov.au/dataset/distribution-overhead-power-lines-wp-031

OSM data

The OSM dataset is a bundle of all collected OSM data entries in Australia in a

layer-based representation for the categorisation of multi-line strings, line strings

and points. It contains various data types, such as roads, tracks, traffic lights,

buildings, fences, waterfalls, mineshafts, gas stations and many other features that

have been captured as points of interest. Not all of the data within the dataset

are relevant to this thesis, and therefore, only the line string layer relevant to

this thesis that includes roads and roundabouts will be used. Source: http:

//download.geofabrik.de/australia-oceania/australia.html
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DBpedia data

The DBpedia dataset is a snapshot of the Wikipedia dataset prepared as linked

data for the Semantic Web. Wikipedia datasets are collected by community effort,

as anyone can contribute data to Wikipedia. In the scope of this thesis, a town

description will be retrieved from DBpedia for each passing town when planning

a route from one place to another. Example (Perth, WA):

http://dbpedia.org/resource/Perth,_Western_Australia

3.3 Metadata Structure

The datasets from MRWA, Landgate, OSM and Western Power contain various

metadata information, such as an object identifier, a road name and a kilometre

point (SLK). It is not necessary to assign the data structure to a specific approach,

such as road network translation, road network conflation or route planning,

as the datasets can be used in multiple approaches. For instance, the MRWA

datasets will be used for the road network translation, the road network conflation

and the route planning approaches. The Landgate data will be employed for the

road network translation and the road network data conflation approaches. The

Western Power dataset and the OSM datasets will only be used for one approach

each, i.e. the route planning and the road network data conflation, respectively.

Main Roads Western Australia metadata

The structure of the MRWA metadata information of traffic signal sites, legal

speed limits, road stopping places, regulatory signs and road networks is shown

in Table 3.1. The table view allows for the recognition of metadata identifiers

among the shared MRWA datasets. For example, all MRWA datasets use an

‘object identifier’ for unique asset identification. Not all of the metadata are

required for processing in this thesis, but they are still indicated in the table to

represent the given information. The important metadata are as follows:

• Object identifier: a unique object identification.

54

http://dbpedia.org/resource/Perth,_Western_Australia


CHAPTER 3. DATASETS: METADATA STRUCTURE

Table 3.1: Metadata information of the MRWA datasets traffic signal sites, legal
speed limits, road stopping places, regulatory signs, rail crossings, road closures,
intersections and road networks.

MRWA Metadata TSS LSL RSP RS RC I R RN MRWA Metadata TSS LSL RSP RS RC I R RN
Accessible tables ✓ Ownership ✓
Accessible toilets ✓ Panel 01 design ✓
Asset number ✓ Panel 01 design meaning ✓
Commemoration way ✓ Panel 02 design ✓
Common usage name ✓ ✓ ✓ ✓ ✓ Panel 02 design meaning ✓
Constructed shelter ✓ Panel 03 design ✓
Carriageway ✓ ✓ ✓ ✓ Panel 03 design meaning ✓
Closure type ✓ Panel 04 design ✓
Date approved ✓ Panel 04 design meaning ✓
Date inspected ✓ Panel count ✓

Date installed ✓ RA name 
(region name) ✓ ✓ ✓ ✓ ✓

Datum NE ID ✓ RA number 
(region identifier) ✓ ✓ ✓ ✓ ✓

Effluent dump site ✓ Regulatory sign type ✓
End node name ✓ Region ✓
End node number ✓ Rest area name ✓
End SLK ✓ ✓ ✓ Rest area type ✓
End true distance ✓ ✓ ✓ Road ✓ ✓ ✓ ✓ ✓ ✓
Entry date ✓ Road name ✓ ✓ ✓ ✓ ✓
Geoloc ✓ ✓ ✓ ✓ ✓ ✓ Route NE identifier ✓ ✓ ✓ ✓ ✓
Geoloc ST length ✓ ✓ Scenic lookout ✓
Identifier ✓ Service status ✓
IIT Protection ✓ Shape ✓
Incident level ✓ Shape ST length
Incident type ✓ Signal type ✓
Information board ✓ Site reference identifier ✓
Latitude ✓ SLK ✓
LG name 

(town name) ✓ ✓ ✓ ✓ ✓ Speed limit ✓

LG number 
(town identifier) ✓ ✓ ✓ ✓ ✓ Start node name ✓

Lighting present ✓ Start node number ✓
Location ✓ Start SLK ✓ ✓ ✓ ✓
Longitude ✓ Start true distance ✓ ✓ ✓
Natural shade ✓ Stay 24 hour ✓
Network element ✓ Suburb
Network type ✓ ✓ ✓ ✓ ✓ Surface ✓
NM begin MP 
(start measure) ✓ Surface area ✓

NM end MP 
(end measure) ✓ Surface type ✓

Node description ✓ ✓ Traffic impact ✓
Node identifier ✓ ✓ True distance ✓
Node name ✓ ✓ Upload date time ✓
Number of bins ✓ Xing No ✓
Number of tables ✓ Xing Type ✓

Number of toilets ✓ XSP 
(cross selection position) ✓ ✓

Object identifier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Datasets: Traffic Signal Sites (TSS); Legal Speed Limits (LSL); Road Stopping Places (RSP); Regulatory Signs (RS); 
Road Closures (RC); Intersections (I); Rail Crossings (R) and Road Network (RN)
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• Start SLK: the kilometre start point of a road asset.

• End SLK: the kilometre end point of a road asset.

• SLK: the kilometre point of a road asset.

• Road: a unique road identifier.

• Route network identifier: a unique identifier of a road that can consist of

one or more road sections.

• Local government authority (LG) number: a unique identifier of a town.

• Regional authority (RA) number: a unique identifier of a region.

• Common usage name: a road name.

• Speed limit: the maximum allowed driving speed on a road.

• Regulatory sign type: the type of regulatory sign (e.g. give way and stop).

• Rest area type: the type of road stopping place (e.g. heavy vehicle rest

area).

Landgate metadata

The structure of the Landgate road network metadata1 is shown in Table 3.2.

The dataset uses the entity ‘object identifier’ for unique asset identification. The

required metadata entities are as follows:

• Object identifier: a unique object identification.

• FC sub-type: the classification of a road network asset, including roads,

roundabouts and roundabout connectors.

• Genoma identifier: the Landgate data index entity.
1 A detailed explanation of Landgate metadata is available at https://catalogue.data.w

a.gov.au/dataset/roads-lgate-012/resource/85ec9f86-17ee-4946-abbf-08b2cb0c
1ccf.
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• MRWA classification: a match to MRWA road assets.

• MRWA road number: a match from a Landgate road to an MRWA road by

using the MRWA metadata entity ‘road’.

• Road name: road name without its type (e.g. Manning Road -> Manning).

• Road type: a road type extension, such as avenue, circuit, crest, drive,

esplanade, heights, lane, parade and way.

Table 3.2: Metadata information of the Landgate road network dataset.

Landgate Metadata (LGATE-012) 
Access level FC sub-type Road access right
Attribute reliability data Genoma identifier Road custodian
Capture method Geographic name Road name
Data custodian Geometric length Road status
Data feature modified Lane count Road suffix
Data feature retired date Map classification Road surface
Data source Metadata identifier Road type
Date feature created MRWA classification Road usage
DEC category MRWA road number Spatial reliability date
DEC type Object identifier Speed limit
Direction category OGC feature identifier Target display
Elevation accuracy Plan accuracy Track hierarchy

Western Power metadata

The Western Power overhead power lines metadata contains the data entries ‘ob-

ject identifier’, ‘pick id’, ‘shape’ and ‘voltage’. Although Western Power provides

the ‘object identifier’ attribute, as seen before in the MRWA and Landgate meta-

data descriptions, the official Western Power asset identifier metadata ‘pick id’

will be used for unique asset allocation. The entities ‘voltage’ and ‘shape’ will

not be used, as it is sufficient to know that an overhead power line is present at

a given location for the route planning approach.
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SOM metadata

The structure of the OSM metadata is indicated in Table 3.3. Once the dataset

is loaded with QGIS,2 then an area of interest can be selected and saved as a

line string layer in a machine-readable format, such as GeoJSON. The next list

defines the metadata that are required for the road network conflation approach

of this thesis:

• OSM identifier: a unique asset identifier.

• Highway: the information about a road asset types, such as residential,

footway, cycleway, secondary, service, step, traffic signal, trunk and turning

circle.

• Other tags: can contain different information about the max speeds, one-

way roads, junctions, roundabouts, bicycle use, footways, surfaces, data

sources, service roads, electrified and any other tag that the person who

entered the data into OSM can define.

Table 3.3: Metadata information of the OSM line strings dataset.

OSM Line Strings Metadata
Aerial way OSM identifier
Barrier Other tags
Highway Waterway
Man-made Z order
Name

2 QGIS is a free and an open-source GIS available at
http://www.qgis.org. The QGIS software is used in this thesis to select road network
selections and to save these selections in the GeoJSON data format.
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3.4 Chapter Summary

This chapter introduced the datasets used in this study. The data selection

included data from MRWA road networks, intersections, regulatory signs, traffic

signals, road stopping places, road closures, rail crossings and speed limits. From

the Landgate road network data, roundabouts and roundabout connectors were

selected. For the consideration of overhead power lines for the route planner, the

Western Power overhead power lines dataset was taken. The introduced datasets

also include OSM and DBpedia data. For each employed dataset, the metadata

were shown, and important data entries that will be employed in later chapters

of this thesis were explained.
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Chapter 4

Road Network Ontology Design

4.1 Chapter Introduction

This chapter will introduce the newly created ontology design of the road network

conflation and route planning approaches. All ontologies used in this dissertation

were developed and optimised for their specific use cases. For the road network

conflation approach, the MRWA, OSM and Landgate ontologies are relevant, as

is a further fourth ontology that manages conflated data; the design is based on

Niestroj et al.’s 2019 work. The route planning approach will employ ontologies

for Western Power and route processing as well as an MRWA ontology whose

principle is based on the MRWA conflation ontology. In addition, newly created

ontology-based data provenance models will be introduced to keep track of the

origin of a dataset and to further define how trusted a dataset from a given source

is.

4.2 Road Network Data Conflation

The road data network conflation ontology is used as a data warehouse, as it

imports the ontologies from MRWA, Landgate and OSM and processes the se-

mantic rules that are applied to all datasets. The first layer of the ontology
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is visualised in Figure 4.1 and indicates that the ontology classes ‘osm:OSM’,

‘mrwa:MRWA’, ‘landgate:Landgate’ and ‘:ConflatedData’ are connected through

‘owl:Thing’. The following prefixes will be used for the road network conflation

approach:

osm: <http://www.example.org/OSM/>

mrwa: <http://www.example.org/MRWA/>

landgate: <http://www.example.org/LANDGATE/>

: <http://www.example.org/DATA/>

owl:Thing

mrwa:MRWAosm:OSM landgate:Landgate :ConflatedData

is-ais-ais-ais-a

Figure 4.1: The top-level class layer of the conflated road network ontology.

Next, the content of each of the newly designed ontologies will be defined,

meaning that the classes and object relations will be explained for each ontology.

4.2.1 MRWA Ontology

The MRWA ontology class is sub-divided into ‘features’, ‘location’ and ‘road

network’ as indicated in Figure 4.2. The features class contains information on

the categorisation of road network geometries. Regions and towns are sub-classes

of the location class and included for the location identification of road assets.

The road network class is used to classify intersections, inventories, roads, road

sections and regulatory signs.

The newly created ontology contains essential object properties for the re-

lations of MRWA data individuals so that the data relations can be processed

and information that means the same thing can be reasoned. The following list

describes the custom-created object properties that are required for the function-

ality of the data conflation process:
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mrwa:MRWA

mrwa:Features
• mrwa:Geometry
o mrwa:LineString
o mrwa:Point

mrwa:Location
• mrwa:Region
• mrwa:Town

mrwa:RoadNetwork
• mrwa:Intersection
• mrwa:Inventory
• mrwa:Road
• mrwa:RoadSection
• mrwa:SignsRegulatory
o mrwa:AllSigns
o mrwa:GiveWaySign
o mrwa:OtherSign
o mrwa:SpeedLimit
o mrwa:StopSign

Figure 4.2: Structure of the MRWA ontology classes for the road network data
conflation.

• ‘mrwa:hasLineCoordinates’ establishes a connection between a road section

individual and its related line string. The inverse ‘mrwa:isLineCoordinatesOf’

is used to allocate a line string to a road section.

• ‘mrwa:hasPointCoordinates’ is used to assign road signs and intersections

to point coordinate individuals. The object property is further used to sepa-

rate line string individuals into point individuals, as point features are a re-

quirement of the road network conflation. The inverse ‘mrwa:isPointCoordi-

natesOf’ identifies an individual of a point, which can be a sign, an inter-

section or a vertex of a line string.

• ‘mrwa:hasRoad’ is used to assign a road section to a road. The inverse is

‘mrwa:isRoadOf’ and classifies a road to a road section.

• ‘mrwa:hasRoadSection’ is an object property of intersections that allocates

a road section to an intersection. The inverse is ‘mrwa:isRoadSectionOf’.

• ‘mrwa:hasTown’ is used to assign a town to a road. Its inverse is ‘mrwa:is-

TownOf’ and describes the direction from a town to a road.
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• ‘mrwa:hasRegion’ is an object property to assign a town to a region, e.g.

the town ‘Wanneroo’ is in the ‘Perth metropolitan’ region. Its inverse is

‘mrwa:isRegionOf’.

• ‘mrwa:isConnectedTo’ is used to connect a road section to a neighbouring

road section so that a road network that is based on road section individuals

can be constructed.

4.2.2 Landgate Ontology

The newly created Landgate ontology class is sub-divided into ‘features’ and ‘road

network’ as shown in Figure 4.3. The features class is used for the categorisa-

tion of road network geometries, and the road network class is used to classify

roundabout connectors, roads and roundabouts.

landgate:LANDGATE

landgate:Features
• landgate:Geometry
o landgate:LineString
o landgate:MultiLineString
o landgate:Point

landgate:RoadNetwork
• landgate:Connector
• landgate:Road
• landgate:Roundabout

Figure 4.3: Structure of the Landgate ontology classes.

The ontology contains custom-created object properties for the relations of

Landgate data individuals so that the data relations can be processed and infor-

mation that means the same thing can be reasoned. The newly designed Landgate

object properties are as follows:

• ‘landgate:hasMultiLineCoordinates’ is an object property of a road section

that keeps track of the related multi-line strings, as road sections, round-

abouts and roundabout connectors are represented by multi-line strings.

The inverse is ‘landgate:isMultiLineCoordinatesOf’ and is used for the di-

rection from a road asset to its multi-line string.

63



CHAPTER 4. ROAD NETWORK ONTOLOGY DESIGN: ROAD NETWORK DATA
CONFLATION

• ‘landgate:hasLineCoordinates’ is used for the sub-division of multi-line strings

into line strings. The inverse is ‘landgate:isLineCoordinatesOf’ and is used

for the connection of line strings to multi-line strings.

• ‘landgate:hasPointCoordinates’ is an object property of a line string, as

each line string consists of at least two points that are separated into point

individuals. The inverse ‘landgate:isPointCoordinatesOf’ connects a point

to its line string.

• ‘landgate:isConnectedToNode’ is used to connect a road section to a neigh-

bouring road section as well as to connect roundabout connectors to round-

abouts and road sections.

• ‘landgate:isGroupOfConnectors’ is used to group the roundabout connec-

tors of the same roundabout.

• ‘landgate:isPartOfSameRoundabout’ is used to group the roundabout indi-

viduals of the same roundabout.

4.2.3 OSM Ontology

The newly designed OSM ontology class is sub-divided into ‘features’ and ‘road

network’ as indicated in Figure 4.4. The features class is used for the categori-

sation of road network geometries, and the road network class is used to set

cycleways, residential roads, roads, roundabouts, service roads, tertiary roads,

trunks and tracks.

Object properties are included in the ontology for the relations of OSM data

individuals so that the data relations can be processed and information that

means the same thing can be reasoned. The following list defines the designed

object properties:

64



CHAPTER 4. ROAD NETWORK ONTOLOGY DESIGN: ROAD NETWORK DATA
CONFLATION

osm:OSM

osm:Features
• osm:Geometry
o osm:LineString
o osm:Point

osm:RoadNetwork
• osm:CycleWay
• osm:FootWay
• osm:Residential
• osm:Roads
• osm:Service
• osm:Tertiary
• osm:Track
• osm:Trunk

Figure 4.4: Structure of the OSM ontology classes.

• ‘osm:hasLineCoordinates’ is an object property of road network assets that

allocates their related line strings. The inverse ‘osm:isLineCoordinatesOf’

is used to match a line string to its road network asset.

• ‘osm:hasPointCoordinates’ is an object property of line strings, as each line

string consists of at least two points. The inverse is ‘osm:isPointCoordinatesOf’.

• ‘osm:isConnectedTo’ is used to connect a road section to a neighbouring

road section.

4.2.4 Conflated Data Ontology

The newly created conflated data ontology class is sub-divided into ‘features’,

‘road network’ and ‘trust’ as shown in Figure 4.5. The features class is used

to set the road network geometries, and the road network class is used for the

categorisation of intersections, roads and roundabouts. The trust class is used

to rank the road asset dataset sources by a trust score, whereby a higher trust

score indicates a more trusted data source (see Section 4.4.5: Trust Provenance).

The classes mentioned will include data individuals from the MRWA, OSM and

Landgate ontologies.
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:ConflatedData

:Features
• :Geometry
o :LineString
o :MultiLineString
o :Point

:RoadNetwork
• :Intersection
• :Road
• :Roundabout

:Trust
•:TrustScore1
•:TrustScore2
•:TrustScore3

Figure 4.5: Structure of the conflated data ontology classes.

The ontology contains object properties for conflating MRWA, Landgate and

OSM data so that data relations can be processed and information that means the

same thing can be reasoned. The following list defines the newly defined object

properties that are needed to identify data that means the same thing within the

different datasets:

• ‘:hasIntersectionPart’ is an object property that connects MRWA intersec-

tions to neighbouring road assets, such as road sections and roundabout con-

nectors. The inverse ‘:isPartOfIntersection’ connects road assets to MRWA

intersections.

• ‘:hasSameLineCoordinates’ is used to describe different line string individu-

als that share the same coordinates. The inverse ‘:isSameLineCoordinates’

traces a line string back to the individual with the same coordinates.

• ‘:hasSameMultiLineCoordinates’ is used to describe different multi-line string

individuals that share the same coordinates. The inverse ‘:isSameMulti-

LineCoordinates’ traces a multi-line string back to the individual with the

same coordinates.

• ‘:hasSamePointCoordinates’ is used to describe different individuals that

share the same point coordinates. The inverse ‘:isSamePointCoordinates’

traces a point back to its road asset.
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• ‘:hasTrustedSource’ is used to set the trust score of a dataset, which relates

to its corresponding data source. The inverse ‘:isTrustedSource’ traces a

trust score back to its road asset.

• ‘:isSameRoadAs’ is used to describe the road section data from ‘Landgate’,

‘MRWA’ and ‘OSM’ that refer to the same road.

4.3 Route Planner

The ontologies that will be used by the route planner are based on MRWA and

Western Power datasets. The MRWA ontology is a simplified version of the

ontology described in Section 4.2.1, as the unused elements of the road network

conflation approach for the route planner have been removed for an efficient

ontology size, meaning that the line strings are not sub-divided into points and

that fewer object properties are used. In addition, road stopping places, rail

crossings and traffic signal sites have been added. A ‘route’ ontology will be used

to save a planned route so that previously calculated routes can be reloaded back

into the route planner at any given time. Ontology reasoning will be not activated

for the route planning, as it is currently not practical with large datasets. The

following prefixes will be used in the route planning approach of this thesis for

the MRWA, Western Power and route ontologies:

mrwa: <http://www.example.org/MRWA/>

wp: <http://www.example.org/WP/>

route: <http://www.example.org/ROUTE/>

4.3.1 MRWA Ontology

The MRWA class is sub-divided into ‘features’, ‘location’ and ‘road network’ as

indicated in Figure 4.6. The features class is used for the categorisation of road

network geometries. Regions and towns are sub-classes of the location class and
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are used to inform about the geographic position of a road section. The road

network class is used to classify roads, road sections, rail crossings, road stopping

places, traffic signal sites and regulatory signs.

mrwa:MRWA

mrwa:Features
• mrwa:Geometry
o mrwa:LineString
o mrwa:Point

mrwa:Location
• mrwa:Region
• mrwa:Town

mrwa:RoadNetwork
• mrwa:RailCrossing
• mrwa:Road
• mrwa:RoadSection
• mrwa:RoadStoppingPlace
• mrwa:SignsRegulatory
o mrwa:AllSigns
o mrwa:GiveWaySign
o mrwa:OtherSign
o mrwa:SpeedLimit
o mrwa:StopSign
• mrwa:TrafficSignalSite

Figure 4.6: Structure of the MRWA ontology classes for route planning.

The ontology contains object properties for the relation of MRWA data in-

dividuals, so that data relations can be identified. The following list defines the

newly designed object properties:

• ‘mrwa:hasLineCoordinates’ establishes a connection between a road section

individual and its related line string.

• ‘mrwa:hasPointCoordinates’ is used to assign regulatory signs and intersec-

tions to their related point coordinate individuals.

• ‘mrwa:hasRoad’ is used to assign a road section to a road.

• ‘mrwa:hasTown’ is used for roads to set a town of a road.

• ‘mrwa:hasRegion’ is an object property to assign a town to a region, e.g.

the town ‘Coolgardie’ is in the ‘Goldfields Esperance’ region.
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4.3.2 Western Power Ontology

The Western Power ontology class is sub-divided into ‘features’ and ‘overhead

power lines’ as shown in Figure 4.7. The features class contains information

for the categorisation of multi-line strings, which are used for the localisation

of overhead power lines. The overhead power lines class provides information

about a power lines data source, which is (in the scope of this thesis) the Western

Power ‘WP-031’1 dataset from the Western Australian data portal. The ontology

contains an object property for the relation of Western Power data individuals,

which is defined as follows:

• ‘wp:hasMultiLineCoordinates’ establishes a connection between an over-

head power line individual and its related multi-line string.

wp:WP

wp:Features
• wp:Geometry
o wp:MultiLineString

wp:OverheadPowerlines
• wp:WP031

Figure 4.7: Structure of the Western Power ontology classes.

4.3.3 Route Ontology

The route ontology class is sub-divided into ‘edge’ and ‘key node’ as indicated in

Figure 4.8. The edge class is used for the representation of route sections, and

the key node class is used to indicate the start and end of a route.

The ontology contains object properties to set the data relations of route data

individuals to establish a connection between the compounding road sections of

a route. The following list defines the newly created object properties:

• ‘route:hasNextRoute’ points to the next route element.
1 https://catalogue.data.wa.gov.au/dataset/distribution-overhead-power-lines

-wp-031
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route:Route

route:Edge route:KeyNode

Figure 4.8: Structure of the route ontology classes.

• ‘route:hasNextRoadEdge’ establishes a connection between the next route

element and the corresponding MRWA road edge individual.

• ‘route:hasPreviousRoute’ points to a previous route element.

• ‘route:hasPreviousRoadEdge’ establishes a connection between a previous

route element and a corresponding MRWA road edge individual.

4.4 Data Provenance Models

Each of the created ontologies has a newly designed underlying PROV-O data

model that describes the relations of the agents, activities and entities. This

section will provide an introduction to the newly created provenance models for

the MRWA, Landgate, OSM and Western Power datasets. The contribution of

this section, i.e. creating provenance for road asset data, is novel and, to the

best of the author’s knowledge, has not been done by other researchers. Overall,

the models share a similar approach, except for the model of the road network

translation approach. A hash table will be used with hash values to simplify the

explanation of the provenance models that share the same layout.

4.4.1 MRWA Provenance

The provenance of simple2 MRWA relations is shown in Figure 4.9. The graph

uses the hash values ‘<data>’, ‘<process>’, ‘<asset>’ and ‘<location>’ as place-

holders for the provenance of road sections, regulatory signs, traffic signal sites,
2 Simple means in this context that line strings are not further sub-divided into points, and

that features have not been translated.
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intersections, road stopping places, rail crossings and speed limits, as indicated

in Table 4.1. To retrieve the right provenance model for each of the assets men-

tioned, e.g. road sections, one has to select the appropriate table row value

and put it in place of the angle brackets (‘<’ and ‘>’). For instance, a road

section ‘mrwa:RoadSection’ had the dataset ‘govdata:98c8107c-1244-4511-8369-

3b9c0d75bca6 (Road Network)’ as ‘prov:hadPrimarySource’, which ‘prov:wasUsed-

By’ the process ‘alg:processMrwaRoadNetwork’. The process ‘prov:wasAssociated-

With’ the agent ‘mrwa:MRWA’ and ‘prov:generated’ the road section, which

‘prov:was-Attributed’ to the agent ‘mrwa:MRWA’. The location of the road sec-

tion was at the entity ‘mrwa:LineString’, which was ‘prov:generated’ by the pro-

cess ‘alg:processMrwaRoadNetwork’.

prov:hadPrimarySource

prov:used

prov:wasGeneratedBy
prov:wasUsedBy

govdata:<Data>

prov:wasPrimarySourceOf

prov:wasAttributedTo

prov:contributed
mrwa:MRWA

prov:wasAssociateFor

prov:wasAssociatedWith

mrwa:<Location>

prov:atLocation

prov:hadPrimarySource

prov:generated

prov:generated

prov:wasGeneratedBy

alg:<Process>

mrwa:<Asset>

Figure 4.9: Provenance model of simple MRWA relations.

For better readability, the inverses of each of the above-mentioned provenance

relations, such as ‘prov:used’, ‘prov:wasPrimarySourceOf’, ‘prov:wasAssociateFor’,

‘prov:wasGeneratedBy’ and ‘prov:contributed’, are not mentioned here but can

be identified interactively from the graph. 3

The MRWA provenance model designed for the translated intersections is

shown in Figure 4.10. One can see that the upper part of the graph that intercon-

nects the data source ‘govdata:1f40e3a3-87a6-4d1b-8869-62bbdbe3bc3c’, the road
3 In addition, the provenance graphs that can be extracted from the hash values in Table 4.1

and the graph in Figure 4.9 are visualised in the appendix in Section A.2.
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Table 4.1: Hash values for the placement in the provenance graph in Figure 4.9.

Data Process Asset Location
98c8107c-1244-4511-8369-
3b9c0d75bca6 (Road Network) processMrwaRoadNetwork RoadSection LineString

f3336e73-38f8-4456-a8d6-
e18a52527495 (Regulatory Signs) processMrwaSigns RegulatorySign Point

1ab843ac-1b21-4ee8-892e-
2d324a56bd78 (Traffic Signal Sites) processMrwaTrafficSignalSites TrafficSignalSite Point

1f40e3a3-87a6-4d1b-8869-
62bbdbe3bc3c (Intersections) processMrwaIntersections Intersection Point

8ff91d94-4604-4c95-a036-76390b
77aeaa (Road Stopping Places) processMrwaRoadStoppingPlaces RoadStoppingPlace Point

203c7fac-14f6-45f2-affd-
e04559aa150c (Rail Crossings) processMrwaRailCrossings RailCrossing Point

1ab843ac-1b21-4ee8-892e-
2d324a56bd78 (Legal Speed Limits) processMrwaSpeedLimit SpeedLimit LineString

asset ‘mrwa:Intersection’, the agent ‘mrwa:MRWA’, the process ‘alg:processMrwa-

Intersections’, which creates an intersection, and their location ‘mrwa:Point (orig-

inal)’ uses the same provenance that has been described above for the example

with hash values. The difference is that in addition, activity ‘alg:translationMethod’

exists and ‘prov:used’ an original point that ‘prov:generated’ an ‘mrwa:Point

(translated)’; a translated point is also mapped as a ‘prov:atLocation’ from an

‘mrwa:Intersection’.

The design of the translated MRWA road sections indicated in Figure 4.11

seems complex at first glance. However, with the knowledge from the previ-

ously described translated intersection provenance models, it can seen that only

two new entities have been added to the lower half of the graph, both of which

concern the location of a road section. The reason for the two extra entities

is that an original MRWA line string will be sub-divided into its original ver-

tex points. The original points and the original line string of a road section

are ‘prov:wasGeneratedBy’ both by the process ‘alg:processMrwaRoadNetwork’.

The process ‘alg:TranslationMethod’ ‘prov:used’ original intersection points and

‘prov:generated’ the entity ‘mrwa:Point (translated)’ as well as ‘prov:generated’

the resulting ‘mrwa:LineString (translated)’ as a result of the translated points.

All points and line strings in the graph are described as a ‘prov:atLocation’ from
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prov:hadPrimarySource

prov:used alg:processMrwa-
Intersections

prov:wasUsedBygovdata:1f40e3a3-87a6-4d1b-
8869-62bbdbe3bc3c
(Intersections)

prov:wasPrimarySourceOf

prov:wasAttributedTo

prov:contributed
mrwa:MRWA

prov:wasAssociateFor

prov:wasAssociatedWith

alg:TranslationMethod

prov:wasUsedBy
prov:used

prov:generated
prov:wasGeneratedBy

mrwa:Point
(translated)

prov:hadPrimarySource prov:atLocation

prov:wasGeneratedBy prov:generated

mrwa:Point
(original)

prov:wasGeneratedBy

prov:generated

mrwa:Intersection

prov:hadPrimarySource prov:atLocation

prov:atLocationprov:hadPrimarySource

Figure 4.10: Provenance model of translated MRWA intersections.

‘mrwa:roadSection, which, inversely, is the inverse a ‘prov:hadPrimarySource’ of

each feature.

4.4.2 Landgate Provenance

The newly created Landgate data provenance is indicated in Figure 4.12 and

shows the tracking of the creation of ‘landgate:RoadAsset’, e.g. the road sections,

roundabouts and roundabout connectors, as well as the resulting features ‘land-

yuchgate:MultiLineString’, ‘landgate:LineString’ and ‘landgate:Point’.

The process ‘alg:processLandgateSlipDataSet’ ‘prov:generated’ the road as-

sets and features. Once a ‘landgate:RoadAsset’ is ‘prov:wasGeneratedBy’ the

process, the related ‘landgate:MultiLineString’ was ‘prov:generated’ and further

sub-divided into instances of ‘landgate:LineString’ and ‘landgate:Point’. The

agent ’landgate:LANDGATE’ had the attribute ’prov:wasAssociateFor’ for the

process and ‘prov:contributed’ the road assets.

Each entity used a ‘prov:hadPrimarySource’ attribute which reffered to the

‘landgate:RoadAsset’ entity. The dataset ‘govdata:85d59328-9eb6-4cdf-b2c0-
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prov:hadPrimarySource

prov:used alg:processMrwa-
RoadNetwork

prov:wasUsedBygovdata:98c8107c-1244-4511-
8369-3b9c0d75bca6
(Road Network)

prov:wasPrimarySourceOf

prov:wasAttributedTo

prov:contributed
mrwa:MRWA

prov:wasAssociateFor

prov:wasAssociatedWith

mrwa:LineString
(original)

prov:hadPrimarySource

prov:hadPrimarySource

prov:atLocation

prov:atLocation

mrwa:Point
(original)

prov:wasGeneratedBy

prov:wasGeneratedBy

prov:wasGeneratedBy

prov:generated

prov:generated

prov:generated

mrwa:RoadSection

prov:generated

prov:wasGeneratedBy

prov:hadPrimarySource prov:atLocation

prov:wasGeneratedBy prov:generated

alg:TranslationMethod

prov:wasUsedBy
prov:used

prov:hadPrimarySource prov:atLocationmrwa:LineString
(translated)

mrwa:Point
(translated)

prov:hadPrimarySource prov:atLocation

prov:wasGeneratedBy prov:generated

Figure 4.11: Provenance model of MRWA road sections for the road network
conflation and the road network translation approaches.

358a141ccb25’ was the ‘prov:wasPrimarySource’ of ‘landgate:RoadAsset’ and ‘prov:wasUsedBy’

the process ‘alg:processLandgateSlipDataSet’.

4.4.3 Western Power Provenance

The provenance graph of the Western Power overhead power lines dataset is indi-

cated in Figure 4.13. The power line entity ‘wp:OverheadPowerline’ was ‘prov:ge-

nerated’ by the process ‘alg:processWPOverheadPowerlines’ and had the entity

‘govdata:ca52f0ad-5705-44ae-84c0-9e5551471997’ as the ‘prov:hadPrimarySource’.

The process ‘prov:generated’ the multi-line string ‘wp:MultiLineString’, which is

a ‘prov:atLocation’ of an ‘wp:OverheadPowerline’. The agent ‘wp:WP’ was the

‘prov:was-AssociateFor’ the process and contributed to the overhead power line

asset. The process ‘prov:used’ the ‘govdata:ca52f0ad-5705-44ae-84c0-9e5551471997’
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landgate:

LANDGATE

prov:wasAssociateFor

prov:wasAssociatedWith

landgate:Multi-
LineString

prov:hadPrimarySource

prov:hadPrimarySource

prov:hadPrimarySource prov:atLocation

prov:atLocation

prov:atLocation

landgate:LineString

prov:wasGeneratedBy

prov:wasGeneratedBy

landgate:Point

prov:wasGeneratedBy

prov:generated

prov:generated

prov:generated

prov:generated

landgate:RoadAsset

prov:hadPrimarySource prov:atLocation

Figure 4.12: Provenance model of the Landgate road asset that will be used for
the road network conflation and road network translation approaches.

dataset. The inverse provenance properties ‘prov:wasAttributedTo’, ‘prov:wasAsso-

ciated-With’ and ‘prov:wasUsedBy’ can be retrieved interactively from the graph.

prov:hadPrimarySource

prov:wasUsedBygovdata:ca52f0ad-5705-44ae-
84c0-9e5551471997

(Distribution Overhead 
Powerlines (WP-031)) prov:wasPrimarySourceOf

wp:Overhead-
Powerline

prov:wasAttributedTo

prov:contributed
wp:WP

prov:wasAssociateFor

prov:wasAssociatedWith

prov:atLocation

prov:hadPrimarySource

wp:MultiLine-
String

prov:wasGeneratedBy

prov:wasGeneratedBy

prov:generated

prov:generated

prov:used alg:processWPOverhead-
Powerlines

Figure 4.13: Provenance model of line strings from the Western Power overhead
power lines dataset.

4.4.4 OSM Provenance

The newly created provenance of the OSMmap lines dataset is indicated in Figure

4.14 and shows the ‘osm:RoadAsset’ entity, which represents the OSM roads and
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roundabouts. Each ‘osm:LineString’ is a ‘prov:atLocation’ of an ‘osm:RoadAsset’.

The line strings are sub-divided into vertex points (‘osm:Point’), which are a

‘prov:atLocation’ of ‘osm:RoadAsset’. The road assets and locations are gener-

ated by the process ‘alg:processOsmMapLines’.

The process ‘prov:wasAssociatedWith’ with the agent ‘osm:OSM’, and the

agent ‘prov:contributed’ to the road asset entities. The data source ‘geofabrik:aus-

tralialatest.osm.pbf’4 ‘prov:used’ the process ‘alg:processOsmMapLines’ and was

the ‘prov:wasPrimarySourceOf’ of the road asset.

prov:hadPrimarySource

prov:used alg:processOsmMapLines

prov:wasGeneratedBy
prov:wasUsedBy

geofabrik:australia-
latest.osm.pbf

(OpenStreetMap data 
Australia)

prov:wasPrimarySourceOf

prov:wasAttributedTo

prov:contributed
osm:OSM

prov:wasAssociateFor

prov:wasAssociatedWith

prov:generated

osm:RoadAsset

prov:hadPrimarySource

prov:hadPrimarySource prov:atLocation

prov:atLocation

prov:wasGeneratedBy

prov:wasGeneratedBy

prov:generated

prov:generated

osm:LineString

osm:Point

prov:hadPrimarySource prov:atLocation

Figure 4.14: Provenance model of line strings from the OSM dataset.

4.4.5 Trust Provenance

The provenance model that is used to describe the trust score of the OSM,

Landgate and MRWA datasets is indicated in Figure 4.15. The model enables a

trust score allocation from one to three, with a higher value indicating a more

trusted data source. The OSM data was collected by community effort, and

OSM’s road network datasets will receive a trust score of one. The Landgate

datasets are approved by a governmental authority and will receive a trust score

of two. As, MRWA specialises in road networks and its data are approved by a
4 The prefix ‘geofabrik’ is used for ‘https://download.geofabrik.de/australia-oceania/’, which

is a server that hosts OSM data.
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governmental authority, the MRWA datasets will receive the highest trust score

of three.

:hasTrustedSource
:isTrustedSource

osm:OSM mrwa:MRWA

:TrustScore1

prov:wasAttributedTo

landgate:Landgate

prov:contributed

prov:wasAttributedTo

prov:contributed

prov:wasAttributedTo

prov:contributed

prov:Entity prov:Entityprov:Entity

:TrustScore2

:hasTrustedSource

:TrustScore3

:hasTrustedSource

:isTrustedSource:isTrustedSource

available with semantic rules reasoning

Figure 4.15: Provenance model that applies a trust score between one and three
for the OSM, Landgate and MRWA datasets.

The allocation of the previously described trust scores will be performed af-

ter the application of semantic rules, as seen in the next section with rules 19–

21. The newly created semantic rules identify a ‘prov:agent of a ‘prov:Entity’

(e.g. road section, roundabout, intersection and regulatory sign) and set the

corresponding trust score for each entity. For instance, a ‘prov:Entity’ of type

‘MRWA:RoadSection’ was ‘prov:AttributedTo’ the agent ‘mrwa:MRWA’. There-

fore, the related semantic rule will set ‘:isTrustedSource’ to ‘TrustScore3’.

Trust is a complex research branch in the Semantic Web. Several works that

use custom trust-based Semantic Web models exist, such as those of Wang et al.

(2015); Richardson et al. (2003); Golbeck et al. (2003); Yu et al. (2018); Artz

& Gil (2007). As provenance of and trust in data on the web are an important

research topic, a significant and novel contribution has been provided in this

section, which presented a trust approach for road asset data. The investigation

into a complex Semantic Web trust model for road networks is out of the scope

of this thesis, as this thesis focuses on the representation of road network data
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with the use of Semantic Web technologies, which leads to a case study of a route

planner driven by these technologies.

4.5 Chapter Summary

This chapter delivered a new approach for the data management of road network

data using Semantic Web technologies for the identification of road assets. A

newly created conflated data ontology was introduced for the road network con-

flation approach as a main ontology that is capable of compounding the newly

created OSM, MRWA and Landgate ontologies.

The newly created ontologies for the route planner were based on datasets

from MRWA and Western Power. The two ontologies were designed to deliver

road network information for the ontology-based route planning approach. In

addition, a newly created route ontology was indicated and will be used in later

parts of this thesis for the machine-understandable saving and reading of planned

routes.

The newly created provenance models supported a trust-based approach for

the data quality of road network assets based on their source. The development

of a trust approach for the quality of road network data sources has not been

accomplished by other researchers before and is a significant contribution of the

author.
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Method

5.1 Chapter Introduction

This study has various stages, including the identification of Semantic Web tech-

nologies that can be applied to road network data, the GeoJSON data migration

into the RDF format, the comparison of datasets with data that mean the same

thing, and data provenance tracking. These stages all lead to a route planning

approach for heavy vehicles driven by Semantic Web technologies.

To include Semantic Web rules within the context of this dissertation is a

significant contribution, as it will enable machines to understand heterogeneous

metadata that mean the same thing. Thus, this chapter will highlight the newly

created Semantic Web rules, which are a key development towards road asset

data harmonisation and the trust aspect of road asset data sources.

As this study uses MRWA and Landgate road network data, an investigation

into the differences of each data source is significant, as both MRWA and Landgate

are Western Australian authorities that provide access to their road network data

through the Western Australian Government data portal.1 Therefore, to activate

the data comparison of MRWA and Landgate road network data, translation

methods were newly designed by the author to translate the MRWA road networks
1 http://data.wa.gov.au
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data to the location of Landgate data. The translation methods will be further

explained in this chapter.

This chapter will also be used to explain the key features of the newly created

route planner so that the reader will be informed of its functionalities. In addition,

the OWL Java API and the GeoTools GIS Toolkit are external libraries for the

use of Semantic Technologies within Java software developments. The use of

these two APIs was integrated by the author to simplify the use of Semantic Web

technologies with a common programming language, such as Java.

5.2 Semantic Rules for Road Asset Conflation and

Trust

The road network conflation approach enables the identification of road asset data

that mean the same thing throughout the MRWA, Landgate and OSM datasets.

For a working data conflation, SWRL rules need to be defined so that the ontology

reasoner can reason over the data. In this section, Objective 4 of this dissertation

will be addressed with significant and novel SWRL rules for the road network that

are critical for the identification of road asset data that mean the same thing in

the context of this thesis. In some of the following semantic rules, offset values for

longitude and latitude that were selected based on experience values that worked

in the tested road network selections will be defined; the offset values will be

used to identify the road assets in a defined offset and are not related to possible

survey errors. In addition, this section will contain newly defined SWRL rules

for the novel and significant road network data trust models. A description of

the contributed semantic rules is given next:

Rules 1, 2: Determine the same road within the MRWA and Landgate data, and Landgate

and MRWA data.
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landgate:Road(?b) ˆ swrlb:notEqual(?bValue, "") ˆ

mrwa:ROAD(?a, ?aValue) ˆ mrwa:RoadNode(?a) ˆ

swrlb:notEqual(?aValue, "") ˆ swrlb:contains(?aValue, ?bValue)ˆ

landgate:mrwaroadnumber(?b, ?bValue) -> isSameRoadAs(?a, ?b)

landgate:Road(?b) ˆ swrlb:notEqual(?bValue, "") ˆ

mrwa:ROAD(?a, ?aValue) ˆ mrwa:RoadNode(?a) ˆ

swrlb:notEqual(?aValue, "") ˆ swrlb:contains(?aValue, ?bValue)ˆ

landgate:mrwaroadnumber(?b, ?bValue) -> isSameRoadAs(?b, ?a)

Rules 3, 4: Determine the same road within the Landgate and OSM data, and OSM and

Landgate data. The property ‘landgate:rd_name_decoded’ uses custom-

created road name metadata that do not use road-type abbreviations (e.g.

Street instead of St, Close instead of Cl, Avenue instead of Av and so on) to

match with the OSM metadata road name notations. The unabbreviated

values are extracted from Landgate (2018) and will be processed quickly

with a hash table when creating the data individuals.

swrlb:containsIgnoreCase(?aValue, ?bValue) ˆ

landgate:rd_name_decoded(?a, ?aValue) ˆ osm:name(?b, ?bValue)

-> isSameRoadAs(?a, ?b)

swrlb:containsIgnoreCase(?aValue, ?bValue) ˆ

landgate:rd_name_decoded(?a, ?aValue) ˆ osm:name(?b, ?bValue)

-> isSameRoadAs(?b, ?a)

Rules 5, 6: Determine the same road within the MRWA and OSM data and OSM

and MRWA data. The property ‘mrwa:ROAD_NAME_DECODE’ uses
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custom-created road name metadata that do not use road-type abbrevia-

tions (e.g. Street instead of St, Close instead of Cl, Avenue instead of Av

and so on) to match with the OSM metadata road name notations.

swrlb:containsIgnoreCase(?aValue, ?bValue) ˆ

mrwa:ROAD_NAME_DECODE(?a, ?aValue) ˆ mrwa:RoadNode(?a) ˆ

osm:name(?b, ?bValue) -> isSameRoadAs(?a, ?b)

swrlb:containsIgnoreCase(?aValue, ?bValue) ˆ

mrwa:ROAD_NAME_DECODE(?a, ?aValue) ˆ mrwa:RoadNode(?a) ˆ

osm:name(?b, ?bValue) -> isSameRoadAs(?b, ?a)

Rule 7: If an MRWA intersection is within a radius of 0.0001° longitude (≈9.45m)

and 0.0001° latitude (≈11.09m) of an MRWA road section, set the inter-

section as part of the road section.2

mrwa:LONGITUDE(?b1, ?b1Long) ˆ

swrlb:subtract(?rangeLong, ?cLong, ?b1Long) ˆ

mrwa:LATITUDE(?b1, ?b1Lat) ˆ

swrlb:lessThanOrEqual(?absrangeLat, "0.0001"ˆˆxsd:decimal) ˆ

mrwa:LONGITUDE(?c, ?cLong) ˆ mrwa:LineString(?b) ˆ

mrwa:Point(?c) ˆ mrwa:hasPointCoordinates(?a1, ?b1) ˆ

swrlb:abs(?absrangeLong, ?rangeLong) ˆ

swrlb:subtract(?rangeLat, ?cLat, ?b1Lat) ˆ

2 The transformation from longitude and latitude in distances in metres was processed with
Vincenty’s inverse formula and applied for the coordinates in Perth, Western Australia.
An online applet for the transformation is provided by Geoscience Australia at https:
//geodesyapps.ga.gov.au/vincenty-inverse.
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mrwa:LATITUDE(?c, ?cLat) ˆ mrwa:Intersection(?a1) ˆ

swrlb:lessThanOrEqual(?absrangeLong, "0.0001"ˆˆxsd:decimal) ˆ

mrwa:hasLineCoordinates(?a, ?b) ˆ mrwa:RoadNode(?a) ˆ

mrwa:hasPointCoordinates(?b, ?c) ˆ mrwa:Point(?b1) ˆ

swrlb:abs(?absrangeLat, ?rangeLat) -> hasIntersectionPart(?a1, ?a)

Rule 8: If an MRWA intersection is within a radius of 0.0001° longitude (≈9.45m)

and 0.0001° latitude (≈11.09m) of a Landgate roundabout connector, set

the intersection as part of the connector.

mrwa:LONGITUDE(?b1, ?b1Long) ˆ mrwa:LATITUDE(?b1, ?b1Lat) ˆ

swrlb:lessThanOrEqual(?absrangeLat, "0.0001"ˆˆxsd:decimal) ˆ

swrlb:subtract(?rangeLong, ?dLong, ?b1Long) ˆ landgate:Point(?d) ˆ

landgate:LineString(?c) ˆ landgate:MultilineString(?b) ˆ

mrwa:hasPointCoordinates(?a1, ?b1) ˆ

swrlb:abs(?absrangeLong, ?rangeLong) ˆ

landgate:hasMultilineCoordinates(?a, ?b) ˆ mrwa:Intersection(?a1) ˆ

swrlb:lessThanOrEqual(?absrangeLong, "0.0001"ˆˆxsd:decimal) ˆ

landgate:LATITUDE(?d, ?dLat) ˆ landgate:Connector(?a) ˆ

landgate:hasLineCoordinates(?b, ?c) ˆ

landgate:LONGITUDE(?d, ?dLong) ˆ

landgate:hasPointCoordinates(?c, ?d) ˆ

swrlb:subtract(?rangeLat, ?dLat, ?b1Lat) ˆ

mrwa:Point(?b1) ˆ swrlb:abs(?absrangeLat, ?rangeLat)

-> hasIntersectionPart(?a1, ?a)
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Rule 9: If an MRWA intersection is within a radius of 0.0001° longitude (≈9.45m)

and 0.0001° latitude (≈11.09m) of a Landgate road section, set the inter-

section as part of the road section.

mrwa:LONGITUDE(?b1, ?b1Long) ˆ mrwa:LATITUDE(?b1, ?b1Lat) ˆ

swrlb:subtract(?rangeLong, ?dLong, ?b1Long) ˆ landgate:Point(?d) ˆ

landgate:LineString(?c) ˆ landgate:MultilineString(?b) ˆ

swrlb:lessThanOrEqual(?absrangeLong, "0.0001"ˆˆxsd:decimal) ˆ

mrwa:hasPointCoordinates(?a1, ?b1) ˆ

swrlb:abs(?absrangeLong, ?rangeLong) ˆ

landgate:hasMultilineCoordinates(?a, ?b) ˆ mrwa:Intersection(?a1) ˆ

landgate:LATITUDE(?d, ?dLat) ˆ landgate:Road(?a) ˆ

landgate:hasLineCoordinates(?b, ?c) ˆ

landgate:LONGITUDE(?d, ?dLong) ˆ

swrlb:lessThanOrEqual(?absrangeLat, "0.0001"ˆˆxsd:decimal) ˆ

landgate:hasPointCoordinates(?c, ?d) ˆ

swrlb:subtract(?rangeLat, ?dLat, ?b1Lat) ˆ

mrwa:Point(?b1) ˆ swrlb:abs(?absrangeLat, ?rangeLat)

-> hasIntersectionPart(?a1, ?a)

Rule 10: If an MRWA intersection is within a radius of 0.0002° longitude (≈18.90m)

and 0.0002° latitude (≈22.18m) of an OSM road section, set the intersection

as part of the road section.

mrwa:LONGITUDE(?b1, ?b1Long) ˆ

osm:hasLineCoordinates(?a, ?b) ˆ
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swrlb:subtract(?rangeLong, ?cLong, ?b1Long) ˆ osm:Point(?c) ˆ

mrwa:LATITUDE(?b1, ?b1Lat) ˆ osmap:RoadNetwork(?a) ˆ

osm:LONGITUDE(?c, ?cLong) ˆ

mrwa:hasPointCoordinates(?a1, ?b1) ˆ

swrlb:abs(?absrangeLong, ?rangeLong) ˆ

swrlb:lessThanOrEqual(?absrangeLong, "0.0002"ˆˆxsd:decimal) ˆ

swrlb:subtract(?rangeLat, ?cLat, ?b1Lat) ˆ

osmap:hasPointCoordinates(?b, ?c) ˆ mrwa:Intersection(?a1) ˆ

swrlb:lessThanOrEqual(?absrangeLat, "0.0002"ˆˆxsd:decimal) ˆ

osm:LATITUDE(?c, ?cLat) ˆ osmap:LineString(?b) ˆ

mrwa:Point(?b1) ˆ swrlb:abs(?absrangeLat, ?rangeLat)

-> hasIntersectionPart(?a1, ?a)

Rule 11: If an MRWA sign is within a radius of 0.00025° longitude (≈26.62m) and

0.00025° latitude (≈27.72m) of an MRWA intersection, set the signs as part

of the intersection.

mrwa:LONGITUDE(?b1, ?b1Long) ˆ

swrlb:lessThanOrEqual(?absrangeLat, "0.00025"ˆxsd:decimal) ˆ

mrwa:AllSigns(?a) ˆ mrwa:LATITUDE(?b1, ?b1Lat) ˆ

swrlb:subtract(?rangeLong, ?bLong, ?b1Long) ˆ

mrwa:LATITUDE(?b, ?bLat) ˆ mrwa:Point(?b) ˆ

mrwa:hasPointCoordinates(?a1, ?b1) ˆ

swrlb:abs(?absrangeLong, ?rangeLong) ˆ

swrlb:lessThanOrEqual(?absrangeLong, "0.00025"ˆˆxsd:decimal) ˆ
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mrwa:LONGITUDE(?b, ?bLong) ˆ mrwa:Intersection(?a1) ˆ

swrlb:subtract(?rangeLat, ?bLat, ?b1Lat) ˆ

mrwa:hasPointCoordinates(?a, ?b) ˆ

mrwa:Point(?b1) ˆ swrlb:abs(?absrangeLat, ?rangeLat)

-> hasIntersectionPart(?a1, ?a)

Rule 12: Determine the same line string within the MRWA and Landgate data.

mrwa:LineString(?a) ˆ mrwa:coordinates(?a, ?aValue) ˆ

landgate:LineString(?b) ˆ landgate:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSameLineCoordinates(?a, ?b)

Rule 13: Determine the same line string within the MRWA and OSM data.

mrwa:LineString(?a) ˆ mrwa:coordinates(?a, ?aValue) ˆ

osm:LineString(?b) ˆ osm:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSameLineCoordinates(?a, ?b)

Rule 14: Determine the same line string within the Landgate and OSM data.

landgate:LineString(?a) ˆ landgate:coordinates(?a, ?aValue) ˆ

osm:LineString(?b) ˆ osm:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSameLineCoordinates(?a, ?b)

Rule 15: Determine the same point within the MRWA and Landgate data.
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mrwa:Point(?a) ˆ mrwa:coordinates(?a, ?aValue) ˆ

landgate:Point(?b) ˆ landgate:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSamePointCoordinates(?a, ?b)

Rule 16: Determine the same point within the MRWA and OSM data.

mrwa:Point(?a) ˆ mrwa:coordinates(?a, ?aValue) ˆ

osm:Point(?b) ˆ osm:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSamePointCoordinates(?a, ?b)

Rule 17: Determine the same point within the Landgate and OSM data.

landgate:Point(?a) ˆ landgate:coordinates(?a, ?aValue) ˆ

osm:Point(?b) ˆ osm:coordinates(?b, ?bValue) ˆ

swrlb:equal(?aValue, ?bValue) -> hasSamePointCoordinates(?a, ?b)

Rule 18: Identify if an MRWA intersection is a roundabout.

RoadNetwork(?a) ˆ hasIntersectionPart(?a, ?b) ˆ

landgate:Connector(?b) -> Roundabout(?a)

Rule 19: Set an OSM road network asset entity to a trust score of one.

prov:Entity(?a) ˆ osm:OSM(?a) -> hasTrustedSource(?a, TrustScore1)

Rule 20: Set a Landgate road network asset entity to a trust score of two.
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prov:Entity(?a) ˆ landgate:Landgate(?a)

-> hasTrustedSource(?a, TrustScore2)

Rule 21: Set an MRWA road network asset entity to a trust score of three.

prov:Entity(?a) ˆ mrwa:MRWA(?a)

-> hasTrustedSource(?a, TrustScore3)

5.3 Road Network Translation Features

The road network translation approach uses Landgate road section, roundabout

and connector datasets as a reference for the MRWA road asset translation. In the

scope of Objective 5, the vertices of the MRWA intersections and road sections are

processed by an algorithm that considers a rules-based feature translation, that

applies seven different methods in ascending order. Adjacent coordinates in off-

sets of 6.00m, 6.20m, 16.00m and 25.00m will be considered as valid neighbours

depending on the applied translation method. The defined offsets are explicit

based on the experience values that worked best during the algorithm design by

empirical testing and are not associated with measurement uncertainties regard-

ing the location accuracy of road assets. The reason for not including possible

measurement uncertainties is related to the discrepancies of the observed road

asset locations compared to the publicly available data taken from the MRWA

open data portal, which is based on IRIS datasets (Karpinski, 2012). Table 5.1

summarises the translation methods with their configured offsets for the data

processing in this thesis. The offsets may need adjustments for other datasets.

Methods 1 and 2 are used to translate MRWA intersection features to Landgate

connectors and road sections, respectively. The Landgate features must be within

a range of 6.00m of an MRWA intersection. The same offset is applied in Method

88



CHAPTER 5. METHOD: ROAD NETWORK TRANSLATION FEATURES

Table 5.1: Road network translation methods and their offsets.

Method Description Offset
1 Translate an MRWA intersection to a Landgate connector point. 6.00 m
2 Translate an MRWA intersection to a Landgate road section 

point. 
6.00 m

3 Translate an MRWA road section point to an MRWA 
intersection:
- Method 3.1: intersection was translated by Method 1.
- Method 3.2: intersection was translated by Method 2.

6.00 m

4 Translate an untranslated MRWA road section point to a 
Landgate road section:
- Method 4.0: point remains between two Landgate road section 
line strings (exception case).
- Method 4.1: translate to a road section point.
- Method 4.2: translate to the nearest interpolated road section 
point.

25.00 m

5 Translate an MRWA intersection to the nearest translated 
MRWA road section point.

16.00 m

6 Translate an MRWA intersection to the centre of two Landgate 
road sections. 

16.00 m

7 Translate an MRWA road section point to an MRWA 
intersection that previously untranslated or translated Method 5 
or 6.

6.20 m

3 when translating MRWA road section features to translated MRWA intersec-

tions. If an MRWA road section feature is not translated before the processing of

Method 4, then it will be translated to the nearest Landgate road section feature

in a range of 25.00m.

Method 5 translates an MRWA intersection to the nearest translated MRWA

road section or in between an MRWA left and right carriageway so that the

position of the intersection will be in between the two MRWA lanes.3

Method 6 translates an MRWA intersection in between two Landgate road

sections in an offset of 16.00m and is applied when MRWA provides for a two-lane

road road node one piece of data, whereby the Landgate data represent the same

road node with one datasets for each lane. If an intersection has been translated

by Methods 5 or 6, then a related MRWA road section will be translated to this
3 In the context of this thesis, the terms ‘centreline’, ‘road section’, ‘edge’ and ‘lane’ will

always refer to a given centreline dataset of a road section.
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Method 1 Method 2

Method 6

Method 3.1 Method 3.2

Method 4.0 Method 4.1 Method 4.2

Method 5 Method 7

translation vector

offset intake area

Landgate road asset

MRWA road section

MRWA intersection

Figure 5.1: Graphical representation of the custom translation methods which
are applied by the algorithm in ascending order.

intersection with Method 7 in a 6.20-m offset to enable a seamless road network

representation.

For a better understanding of the translation methods and related offsets, a

visualisation to indicate the translation principles is given in Figure 5.1.

5.4 Route Planner Features

The route planning approach implements Dijkstra’s shortest path algorithm for

the shortest route between two road nodes. An opportunity to select multiple

points in order to determine a route through additional points of interest is given.

Moreover, DBpedia will be queried with SPARQL statements to retrieve infor-

mation about a town of a road section each time the town changes. The route

planner can determine a road edge’s weight by its distance or travel time. Con-

figurable constraints can be taken into account to increase an edge weight, such

as the following:
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• Power lines: each time a road edge is crossed by an overhead power line,

then a configurable value can be added to an edge weight.

• Rail crossings: If a rail crossing occurs at a road section, then a configurable

value can be added to an edge weight.

• Turning circles: if a route from A to B requires left and/or right turns, then

an additional edge weight can be configured per turn.

• Traffic signals: traffic signals are set to a green light by default. How-

ever, the signal state can be influenced by a random number generator that

switches states between green and red. If a route includes passing through

a red traffic signal, then a custom weight can be added to an edge weight.

• Regulatory signs: stop and give way signs are taken into account in the

route planning, as the wait time at a sign can influence the travel time.

Therefore, if a route includes regulatory signs, a configurable extra weight

can be added to the related road edge.

• Road closures: road closures can be retrieved live from the Australian OGD

portal to provide updated road closures information. If a road closure oc-

curs, then its edge weight will be set to a very large value so that any other

road edge will be considered as a better choice for the shortest route.

A further feature of the route planner is the consideration of road stopping

places. This means that a user can configure to visit a road stopping place in a

recurring range considering the air-line distance4 from the start point to the road

stopping place. A schema to plan a route with road stopping places is indicated

in Figure 5.2. In Figure 5.2 a), a start node and a destination node are selected.

Then, in Figure 5.2 b), a boundary polygon is created between the coordinates

of the start node and the end node. After that, an algorithm iterates through

the road stopping places dataset and selects the nearest road stopping place in
4 A calculated distance between two points without considering the road network.
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Figure 5.2: Schema to determine road stopping places between a start node and
a destination node in a configured range.

the area of interest, which, in this example, is between 20 and 40 km within

the highlighted boundary polygon. The identification of the road stopping place

within the defined distance is done using Vincenty’s5 formula, which identifies a

distance between two points. Next, a route can be calculated between the start

node and nominated road stopping place. In Figure 5.2 c), a new start node is

defined at the end of the calculated route, as the first temporary route to the road

stopping place was processed. In Figure 5.2 d), the algorithm applies the same
5 http://www.movable-type.co.uk/scripts/latlong-vincenty.html
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process described before to identify a road stopping place in a configured range.

As no road stopping place exists in the second area of interest in this example,

the route planner will calculate a route from the newly defined start node to the

destination node. Finally, Routes 1 and 2 will be merged into one compounded

route (not indicated in Figure 5.2).

5.5 Route Planner Mock-Ups

The main frame and option frame functionalities of the route planner will be

explained with mock-ups in this section. The mock-ups are used as a design

guideline that contributes to thesis Objective 6. In later chapters of this thesis,

the functionalities described here will be implemented, used with road network

data and, finally, evaluated without further description. Thus, this section is

fundamental for the understanding of the user interfaces. The mock-ups are gen-

erated with the Java Integrated Development Environment (IDE) IntelliJ IDEA

from JetBrains.6

5.5.1 Main View

The mock-up of the main view of the route planning approach can be explained

with a total of six panels, two left panels, i.e. three right panels and one middle

panel (see Figure 5.3). The road network is displayed in the middle panel. The

top-left panel shows the evaluation of the planned route, and the bottom-left

panel will display the layer elements road nodes, road edges, regulatory signs,

traffic signals, rail crossings, road stopping places, road closures and processed

routes. The layers can be either shown, hidden or removed from the middle panel

from the map using the buttons below the bottom-left panel.

The top-right area of the mock-up has two buttons, ‘add routes’ and ‘reset

map’. A click on the ‘reset map’ button will repaint the map to its initial state,
6 http://www.jetbrains.com/idea/
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top-left

bottom-left
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top-right

bottom-right
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(road network map and route visualisation)

(saved routes)

(planned route evaluation)

(current road closures)

(options summary)

(selectable map layers)

Figure 5.3: Mock-up of the route planner main view.

which is equal to the state after the programme start. Once the ‘add routes’

button is clicked, a previously calculated route will be listed in the panel below

the buttons; a route can be loaded with a click on an entry.

The middle-right panel will summarise the current route planner configura-

tion. Thus, the configured extra costs of power lines, rail crossings, left turns,

right turns, traffic signals, stop signs and give way signs will be listed, as will the

rest intervals of the configured road stopping places. In addition, the configured

values for the edge weight types ‘distance’ and ‘travel time’, and the maximum

number of processed routes will be shown.

Above the bottom-right panel are the buttons ‘add road closures’ and ‘get

data’. A click on the ‘get data’ button will download the current MRWA road

closures data from the Australian OGD portal. After that, road closures can

be added to the map with a click on the button ‘add road closures’. The road

closures data will be also listed as a text in the bottom-right panel.
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Figure 5.4: Buttons related to the map content navigation and selection on the
map panel in the order of road edge selection, map scrolling, fitting map to panel
size, zoom in, zoom out and road asset information.

At the bottom of the main view panel, buttons are placed for map navigation

and route planner interaction. The first six buttons are related to the navigation

and the selection of the map content (see Figure 5.4). The buttons that are

displayed next to the navigation buttons are explained in the next list:

• Options: view the options panel to configure the route planner.

• Start: after pressing the ‘start’ button, a road node can be selected and will

be used as the start point for a to planned route.

• Stop: after pressing the ‘stop’ button, a road node can be selected and will

be used as the end point for a to planned route.

• Multi: a click on the button ‘multi’ enables the selection of multiple travel

points, which will be considered in ascending order by the route planning

algorithm.

• Calculate: after the selection of either a start and end point or at least two

multiple points, the ‘calculate’ button will be enabled, and a route can be

calculated with a click on this button.

• Write TTL: the ‘write TTL’ button will be enabled after a route has been

successfully calculated. A click on this button will save a processed route

in the ‘route’ ontology in the RDF Turtle file format.

5.5.2 Options

Options are available, as shown in Figure 5.5. A user can choose to calculate

an edge weight by its distance or its travel time. Next to the edge weight con-
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figuration are options regarding the extra costs of power lines, turning circles,

traffic signals, regulatory signs, and rail crossings. The options group allows the

configuration of additional cost values in metres or seconds to be added to a cor-

responding edge weight. If processing multiple possible routes is required to find

the best route, then a limit can be set for the number of route processings. The

traffic signal configuration also contains a text box to randomise the traffic signal

state. For example, if the value is set to ‘33%’, then a random number generator

will process random numbers between 0 and 100 for each traffic signal site. If the

resulting number is below or equal to ‘33’, then the traffic signal will be set to a

green signal, and no additional edge weight will be added; otherwise, the traffic

signal state will be set to a red signal state, and an extra weight will be added to

a related road edge.

Figure 5.5: Mock-up of the route planner options panel.
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The configuration for road stopping places can be used for an efficient identi-

fication of road stopping places. Therefore, the air-line distance between a start

point and a road stopping place will be used, as it prevents the need to calculate

a route between a start point and every road stopping place in a given offset. A

user can enter an average speed in km/h that will be used if an edge weight eval-

uation will be conducted based on its travel time. Otherwise, if an edge weight

is evaluated by its distance, the minimum and maximum distances in kilometres

will be taken into account. For instance, if the edge weight configuration is set

to ‘travel time’ and the average speed value is set to ‘60 km/h’, then a minimum

configured travel time of one hour to a road stopping place will be equal to a

distance of 60 km. Furthermore, the configured maximum travel time to a road

stopping place of three hours will be equal to a 180-km air-line distance.

The buttons at the very bottom of the options panel are used to abort or save

a customised setup. Thus, the ‘abort’ button will decline a configuration so that

the previous configuration remains active, and the ‘save’ button will store the

current setup for use in the route planner.

5.6 Application Programming Interfaces

For the development of the route planner in this thesis, two Java APIs that en-

abled essential functionalities were used, namely OWL Java API7 and GeoTools.8

The OWL Java API provided a library for the data exchange with ontologies,

and GeoTools made the following functionalities available: creating a graph of

line strings and multi-line strings, applying Dijkstra’s shortest path algorithm

with a customisable edge weight function, plotting and selecting map features,

and navigating through map content (e.g. scroll, zoom in and zoom out). The

APIs are described here as part of the arrangements, as certain terminology is

mandatory to follow up with the implementation in later parts of this thesis.
7 http://owlcs.github.io/owlapi/
8 http://geotools.org
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5.6.1 OWL Java API

To read ontologies with OWL Java API, it is necessary to process data individuals

and their properties and annotations separately. Once an ontology file is loaded,

an iterator is required to process one data individual after the other. At every

iteration, a data individual needs to be analysed in detail, meaning that data

property assertion axioms, object property axioms and annotation assertion ax-

ioms will be extracted. The axioms can be interpreted as datasets that typically

contain multiple data entries. Each axiom will be explained in the next list:

• Data property assertion axioms contain the metadata of an individual, such

as the object identifier, LG number, LG name, start SLK, end SLK, road,

carriageway, start node number, end node number, and common usage name

for MRWA road sections.

• Object property assertion axioms relate to the properties and sub-properties

of individuals. For instance, the object property ‘geo:hasGeometry’ re-

trieves the location individual of a road section individual.

• Annotation assertion axioms can contain the unknown information of an

individual. This can occur if the data and object properties are not de-

clared in an ontology, whereby they will remain as annotation assertions.

The difference between data properties, object properties and annotation

assertions is that object properties and data properties can be queried with

semantic SWRL rules, while annotation assertions are not available with

SWRL. The reason for this is that the SWRL composer in Protégé9 verifies

semantic rules for correctness, and annotation assertions are not part of a

designed ontology.

An example of a line string and data property extraction from a road sec-

tion individual is shown in Algorithm 5.1. The example mirrors the description
9 http://protege.stanford.edu: a free and open source editor to design ontologies.
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above, except the evaluation of annotation assertions is not implemented, as the

required data properties ‘geo:hasGeometry’ and ‘geo:asWKT’ will be declared

appropriately in the ontology.

Algorithm 5.1: Example of a line string and data property extraction
from a road section individual.
1 O ←− load the ontology
2 foreach individual in O do
3 if individual equals RoadSection then
4 OP ←− get object properties
5 DP ←− get data properties
6 foreach property in OP do
7 if property equals geo : hasGeometry then
8 I ←− get individual
9 DPI ←− get data properties of I

10 foreach dataproperty in DPI do
11 if dataproperty equals geo : asWKT then
12 LS ←− get line string
13 end
14 end
15 end
16 end
17 foreach DataProperty in DP do
18 P ←− get property (e.g. road name and object identifier)
19 end
20 end
21 end

5.6.2 GeoTools Java GIS Toolkit

The implementation of the GeoTools Java GIS Toolkit is an extensive process

with real road network data. Thus, the explanation here in the arrangement

will cover the elementary GeoTools procedures to communicate very basic API

handling with simple examples.

Creating a graph with GeoTools is a straightforward process. Once a line

string generator (variable: ‘lsgg’) has been initialised, line strings can be added

to it. After that, the function call ‘lsgg.getGraph()’ will deliver a non-directed
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graph object that contains nodes and edges. The following Source Code 5.1 shows

the creation of a graph that consists of two line strings, as indicated in Figure

5.6, with a tolerance10 of 0.00001 in longitude and latitude:� �
1 LineStringGraphGenerator lsgg = new LineStringGraphGenerator(0.00001);
2 GeometryFactory gf = JTSFactoryFinder.getGeometryFactory(null);
3 WKTReader reader = new WKTReader(gf);
4 LineString ls1 = reader.read("115.1␣−31.6,␣120.0␣−31.0");
5 LineString ls2 = reader.read("115.1␣−31.6,␣110.0␣−32.0");
6 lsgg .add(ls1) ;
7 lsgg .add(ls2) ;
8 Graph g = lsgg.getGraph();� �

Source Code 5.1: Example of creating a graph that contains two line strings.
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Figure 5.6: Sample graph that shows two connected line strings.

The implementation of Dijkstra’s algorithm with GeoTools requires preparing

a graph, a start/end node, and an edge weighter object. Source Code 5.2 shows a

simple example to calculate the shortest route from a start node to an end node

with a default edge distance weighter, assuming that both the start and end node

have been selected. It can be seen that at line 8, the path will be calculated to

every other node in the graph from the start node and, at line 9, the shortest

route to a given end node will be retrieved. A more efficient approach could
10 If the start or end of a line string is near another line string but not connected, then an

activated tolerance will clean datasets so that a new vertex will be created and the line
strings can be connected at a node.
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include aborting a path calculation once the shortest path to a given end node

has been found, but that functionality is not supported in GeoTools.� �
1 DijkstraIterator .EdgeWeighter weighter = new DijkstraIterator.EdgeWeighter() {
2 public double getWeight(Edge e) {
3 LineString ls = (LineString) e.getObject();
4 return ls.getLength(); } }
5 Node startNode = <selected start node from graph> // node selection hidden
6 Node endNode = <selected end node from graph> // node selection hidden
7 DijkstraShortestPathFinder pf = new DijkstraShortestPathFinder(graph, startNode,

weighter);
8 pf. calculate () ;
9 Path route = pf.getPath(endNode);� �

Source Code 5.2: The example shows the processing of Dijkstra’s shortest path
algorithm by evaluating an edge length. The node selection has been hidden to
simplify the view to focus on the path generation.

With GeoTools, plotting features on a map requires multiple procedures as in-

dicated for the road section dataset in Algorithm 5.2. A feature type needs to be

created with the function ‘createFeatureType’ to initialise the road edge features.

Then, the road section line strings will be processed with a graph generator. Af-

ter that, a simple feature builder will be initialised with the previously created

road edge type. Now, a feature collection can be created with the function ‘Edge-

Builder’. In the end, a map object will be created, and the feature collection will

be added as a layer. The same principle can be applied to display the remaining

datasets ‘road nodes’, ‘power lines’, ‘traffic signal sites’, ‘road stopping places’,

‘rail crossings’, ‘give way signs’ and ‘stop signs’.
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Algorithm 5.2: Principles to define feature types, create features, create
layers and add content to a map with the Java OWL API.
1 Function createFeatureType(Type):
2 Builder ←− initialise simple feature type builder object
3 Builder ←− set attributes (e.g. name, namespace and CRS)
4 Builder ←− add GeoTools metadata (e.g. line string, name and

number)
5 if Type equals RoadSection then
6 Builder ←− add type specific metadata, such as for MRWA road

sections, namely: start SLK, end SLK, start node number, end
node number, carriageway, common usage name, object
identifier, town name, town number, road name, road, speed
limit, road stopping place, well-known-text, has geometry,
distance, and travel time

7 end
8 return feature type retrieved from Builder

9 End Function
10 Function EdgeBuilder(Graph, FeatureBuilder, EdgeType):
11 Result ←− new feature type collection
12 Edges ←− get edges from Graph
13 foreach Edge in Edges do
14 LineString ←− get line string of Edge
15 RoadEdge ←− get corresponding road edge object from Edge
16 FeatureBuilder ←− add LineString
17 FeatureBuilder ←− set GeoTools metadata ‘name’ and ‘number’
18 if EdgeType equals RoadSection then
19 FeatureBuilder ←− set metadata retrieved from RoadEdge
20 end
21 Result ←− add feature created with FeatureBuilder
22 end
23 return Result

24 End Function
25 SimpleFeatureLineStringType ←− createFeatureType(RoadEdge)
26 LineStringGraphGenerator ←− process road section line strings
27 Graph ←− get Graph of LineStringGraphGenerator
28 SimpleFeaturesBuilder ←− setup line strings features
29 FeatureCollection ←− EdgeBuilder (Graph, SimpleFeaturesBuilder)
30 Map ←− create a new map object
31 RoadSectionLayer ←− create layer with FeatureCollection data
32 Map ←− add RoadSectionLayer to the map
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5.7 Chapter Summary

In this chapter, key features were defined to describe the range of functionalities of

the road network conflation, the road network translation and the route planning

approaches. Regarding the road network conflation approach, significant newly

created Semantic Web rules that can be used to enable machines to understand

heterogeneous road asset datasets that mean the same thing were defined. These

rules also included defined rules for the determination of the trust score of road

asset data sources.

Considering the road network translation approach, the significant contribu-

tions of the author included the definitions of the newly designed translation

methods. The translation methods can be activated for the comparison of road

network centreline data that mean the same thing from different data sources. In

the context of this thesis, the author will employ the translation methods for the

comparison of the MRWA and Landgate road network datasets.

In the scope of the route planning approach, the user interfaces of the newly

developed route planner were explained with mock-ups to define the functional-

ities of the route planner environment. Furthermore, the basic concepts of the

employed OWL and GeoTools APIs were explained as part of the arrangements

to convey the required background information before the APIs’ use in the next

chapter.
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Implementation

6.1 Chapter Introduction

In this chapter, the implementation of the methodology will be explained. The

major parts of this chapter are about the data migration from GeoJson road asset

datasets to the Turtle ontology format (Objective 3), the road network translation

from MRWA road sections and intersections to the shape of the Landgate road

network data (Objective 5) and the development of the route planning approach

based on Semantic Web technologies (Objective 6). Flowcharts will be shown for

a better understanding of each major part, source code will be indicated to follow

up with important methods, and algorithms will be used to simplify complex logic

approaches.

6.2 Data Creation

The approach of creating ontology individuals extracted from GeoJSON data files

will be discussed in this section. Flowcharts will be used for the explanation of

the data individuals creation. The creation of related geographic features will be

explained with algorithms. At appropriate positions, the algorithms will refer to
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elementary functions that will be explained with source code, e.g. functions to

write points, line strings, multi-line strings, entities and metadata.

6.2.1 Flowchart Data Creation

In the data creation approach, datasets in the GeoJSON file format will be

processed and written in the Turtle ontology format. This section will explain

the data creation process with flowcharts for each of the nine datasets created,

whereby the approach will be explained with two graphs,1 as the remaining seven

graphs will be matched with hash tables.

The difference between the two flowcharts in this section is that the first

flowchart can be used for original (not translated) datasets, which include Landgate

road sections, OSM map lines, Western Power overhead power lines and MRWA

regulatory signs, speed limits, traffic signal sites, rail crossings and road stopping

places. Meanwhile, the second flowchart can be used for translated datasets, such

as the MRWA road sections and intersections.

6.2.1.1 Original Data

The flowchart for the original datasets is shown in Figure 6.1, and the correspond-

ing hash table is shown in Table 6.1. The hash values ‘<process>’, ‘<input>’,

‘<activity>’ and ‘<write>’ can be placed with the hash table in the appropriate

positions in the flowchart. The following example will clarify the flowchart for

the first data row of the hash table.

After the start, the process ‘LandgateSlipData’ will be activated, and the

Landgate LGATE-012 dataset will be loaded as input from a local GeoJSON file.

Then, the loaded input will be read, and a feature collection of entities can be

created with the data. As long as a feature exists in the features collection, a loop

will iterate through each feature. This means the metadata of a current feature

will be read, and the activities ‘read multi-line string’, ‘extract line string’, ‘ex-
1 For the completeness of this work, all flowcharts will be attached in Appendix A.3.
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Table 6.1: Hash values for the placement in the flowchart in Figure 6.1.

<process> <input> <activity> <write>

LandgateSlipData Landgate 
LGATE-012

read multi-line string, 
extract line string and 

points, and get asset type

multi-line string, line 
string and points

OsmMapLines OSM 
map lines

read line string, extract
points and get asset type

line string 
and points

MrwaRegulatorySigns MRWA 
regulatory signs

read point 
and get sign type point

MrwaSpeedLimits MRWA 
speed limits read point point

MrwaTrafficSignalSites MRWA 
traffic signal sites read point point

MrwaRoadStoppingPlaces MRWA 
road stopping places read point point

MrwaRailCrossings MRWA
rail crossings read point point

WpOverheadPowerlines Western Power
WP-031 read multi-line string multi-line string

tract points’ and ‘get asset type’ will be used to prepare the ontology individuals.

A road asset individual will then be written in the Turtle file format, as will the

related multi-line string, line string and point entities of the current road asset.

If a next feature exists, then the procedure will be repeated. Otherwise, the loop

can be left, and the processing of the flowchart will stop.

The process of creating individuals for the datasets of Landgate (LGATE-012),

MRWA (regulatory signs, speed limits, traffic signal sites, rail crossings and road

stopping places), Western Power (WP-031) and OSM (map lines) is indicated

in Algorithm 6.1. The algorithm mirrors the above-mentioned flowchart and

refers to the key functions ‘writePoint’, ‘writeLineString’, ‘writeMultiLineString’

and ‘writeEntityContent’ in order to create data and provenance in the Turtle

ontology format.

The remaining input entries from the OSM map lines, Western Power WP-

031, and MRWA regulatory signs, speed limits, traffic signal sites, rail crossings

and road stopping places of the hash table can be interpreted in the same way

described above for the Langate LGATE-012 dataset.
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Algorithm 6.1: Create road asset individuals from GeoJSON datasets.
1 FeaturesCollection ←− load GeoJSON dataset
2 foreach Entity in FeaturesCollection do
3 RoadName ←− get road name of Entity
4 Identifier ←− get identifier of Entity
5 Individual ←− compound ’Road Asset’ + RoadName + Identifier
6 Metadata ←− get metadata of Entity
7 if process equals LandgateSlipData then
8 MultiLineString ←− read multi-line string of Entity
9 LineString ←− extract line string of MultiLineString

10 Points ←− extract points of LineString
11 RoadAsset ←− get asset type of Entity
12 foreach Point in Points do
13 writePoint −→ see Section 6.2.2.1
14 end
15 writeLineString −→ see Section 6.2.2.2
16 writeMultiLineString −→ see Section 6.2.2.3
17 end
18 if process equals OsmMapLines then
19 LineString ←− read line string of Entity
20 Points ←− extract points of LineString
21 RoadAsset ←− get asset type of Entity
22 foreach Point in Points do
23 writePoint −→ see Section 6.2.2.1
24 end
25 writeLineString −→ see Section 6.2.2.2
26 end
27 if process equals MrwaRegulatorySigns then
28 RoadAsset ←− get sign type of Entity
29 end
30 if process equals MrwaRegulatorySigns or MrwaSpeedLimits or

MrwaTrafficSignalSites or MrwaRailCrossings or
MrwaRoadStoppingP laces then

31 Point ←− read point of Entity
32 writePoint −→ see Section 6.2.2.1
33 end
34 if process equals WpOverheadPowerlines then
35 MultiLineString ←− read multi-line string of Entity
36 writeMultiLineString −→ see Section 6.2.2.3
37 end
38 writeEntityContent −→ see Section 6.2.2.4
39 end

107



CHAPTER 6. IMPLEMENTATION: DATA CREATION

Start

- read input
- get features collection

input: <input> 
(GeoJSON)

①
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write: road asset 
and <write>

②

② Is next feature in features collection

True

False

True

False

Stop

- process: <process>

Figure 6.1: Flowchart to write road asset individuals and their related features
in the RDF/Turtle format generated from GeoJSON datasets.

6.2.1.2 Translated Data

The flowchart for the MRWA intersections and MRWA road network datasets

for both original features and translated features is indicated in Figure 6.2; the

related hash table is shown in Table 6.2. With the hash table, the hash values

‘<process>’, ‘<input>’, ‘<activity>’, ‘<write translation>’, ‘<write original>’

and ‘<write object>’ are addressed in the graph. The following explanation will

use MRWA intersections as an example to explain the processing of the translated

data flowchart.

At the beginning of the flowchart, the process ‘MrwaIntersection’ will be used

to trigger the flowchart activities after the start. The input file ‘MRWA inter-

section’ will be loaded in the GeoJSON file format. The input data will then

be read and a feature collection will be created. After that, a loop will iterate

through each feature in the collection. At the start of each iteration, each entity’s

metadata and point will be read.
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Table 6.2: Hash values for the placement in the flowchart in Figure 6.2.

<process> <input> <activity> <write translation> <write original> <write object>

MrwaIntersection MRWA
intersections read point point 

(original + translated) point intersection

MrwaRoadNetwork MRWA
road network

read line string 
and extract points

points 
(original + translated) 

and line string 
(original + translated)

line string 
and points

region, town and 
road section

Start

- read input
- get features collection

input: <input> 
(GeoJSON)

①

- read metadata
- <activity>
- get translation info

write: 
<write object>

③

True

False

True

False

Stop

① Is feature in features collection 

② Is road asset translated

②

③ Is next feature in features collection

True

write: 
<write translation>

write: 
<write original>

④ Write road sections connected to relation

False

- process: <process>

Figure 6.2: Flowchart to write original and translated MRWA ontology individ-
uals generated from GeoJSON datasets.

After retrieving the translation info, it can be determined whether an entity

location has been translated or not. If a translation has been processed, then the

original point and the translated point will be written in the Turtle ontology for-

mat. Otherwise, it is sufficient to write the point into the ontology without adding

the information ‘original’ or ‘translated’ for the identification of a translated road
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asset, as the ontology model understands the original locations by default. The

intersection individual and the relation to a connected road section will be writ-

ten into the ontology after the end of condition statement 3. If the next feature

exists, then the procedure will start again as indicated at the flowchart legend

point 2. If there are no remaining features in the collection, then the flowchart

finishes at the stop.

Algorithm 6.2 supports the explanation of the flowchart for the MRWA in-

tersections and road network datasets. The algorithm mirrors the described

flowchart functionality and refers to the functions that create data and provenance

in the required Turtle ontology format, such as ‘writePoint’, ‘writeLineString’,

‘writeMultiLineString’ and ‘writeEntityContent’.
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Algorithm 6.2: Create road asset individuals from original and trans-
lated GeoJSON datasets.
1 FeaturesCollection ←− load GeoJSON dataset
2 foreach Entity in FeaturesCollection do
3 RoadName ←− get road name of Entity
4 Identifier ←− get identifier of Entity
5 Individual ←− compound ’Road Asset’ + RoadName + Identifier
6 Metadata ←− get metadata of Entity
7 Translation ←− get translation info from Entity
8 if process equals MrwaRoadNetwork then
9 LineString ←− read line string of Entity

10 Points ←− extract points of LineString
11 if Entity is translated then
12 foreach Point in Points do
13 writePoint (original) −→ see Section 6.2.2.1
14 writePoint (translated) −→ see Section 6.2.2.1
15 end
16 writeLineString (original) −→ see Section 6.2.2.2
17 writeLineString (translated) −→ see Section 6.2.2.2
18 else
19 foreach Point in Points do
20 writePoint −→ see Section 6.2.2.1
21 end
22 writeLineString −→ see Section 6.2.2.2
23 end
24 writeEntityContent −→ see Section 6.2.2.4
25 end
26 if process equals MrwaIntersection then
27 Point ←− read points of Entity
28 if Entity is translated then
29 writePoint (original) −→ see Section 6.2.2.1
30 writePoint (translated) −→ see Section 6.2.2.1
31 else
32 writePoint −→ see Section 6.2.2.1
33 end
34 writeEntityContent −→ see Section 6.2.2.4
35 end
36 end
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6.2.2 GeoJSON to Turtle Functions

A Python script that reads GeoJSON files and writes the contained data with

provenance in the Turtle file format has been developed. The script enables

the automatic creation of ontology individuals extracted from datasets in the

GeoJSON format. This section will explain the key functionalities that are used

to automate the ontology creation process.

6.2.2.1 Write Point

The function ‘writePoint’ will be used to write a point with its features into the

ontology, as shown in Source Code 6.1. The parameters ‘prefix’, ‘longitude’, ‘lat-

itude’, ‘crs’ and ‘entity’ are the minimum requirements to successfully compound

a point individual in the RDF format. The parameter ‘prefix’ will be used to

differ between the MRWA, Landgate, OSM and Western Power ontologies. The

parameters ‘longitude’, ‘latitude’ and ‘crs’ will be used for the localisation of

an entity with its coordinate reference system. The parameter ‘entity’ will be

used for the identification of a point individual; an example of a point individual

is ‘mrwa:PointCoordinates_Translated_115.71235101_-31.68378145’. Optional

parameters can be set for data provenance in Source Code 6.1, such as ‘generat-

edBy’, ‘primarySource’, ‘translation’ and ‘usedPoint’, as explained next.

At the ‘writePoint’ function start, metadata and properties will be written

into the ontology. If the variables ‘generatedBy’ and ‘primarySource’ are not set

to a default value, then the ‘prov:wasGeneratedBy’ and ‘prov:hadPrimarySource’

attributes will be written into the ontology before the individual definition at

line 16 is completed. If the variables ‘usedPoint’, ‘generatedBy’ and ‘translation’

are set to a value that is not equal to ‘default’, then the provenance information

‘prov:used’, ‘prov:generated’ and ‘prov:wasUsedBy’ can be written into the on-

tology. This means that without changing the default parameters of the variables

‘generatedBy’, ‘primarySource’, ‘usedPoint’ and ‘translation’, the function can

be used without writing provenance into an ontology.
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� �
1 def writePoint(prefix , longitude, latitude , entity , crs , generatedBy='default',

primarySource='default', usedPoint='default', translation='default') :
2 # write properties
3 Ontology.write(entity + '␣rdf:type␣owl:NamedIndividual;\n')
4 Ontology.write('␣a␣sf :Point,␣geo:Point,␣prov:Entity,␣prov:Location;\n')
5 Ontology.write('␣geo: lat␣' + str(latitude) + ';\n')
6 Ontology.write('␣geo:long␣' + str(longitude) + ';\n')
7 Ontology.write('␣geosparql:asWKT␣"Point(' + str(longitude) + '␣' + str(latitude)

+ ')"^^geosparql:wktLiteral;\n')
8 Ontology.write('␣' + prefix + 'LATITUDE␣' + str(latitude) + ';\n')
9 Ontology.write('␣' + prefix + 'LONGITUDE␣' + str(longitude) + ';\n')
10 Ontology.write('␣' + prefix + 'CRS␣' + str(crs) + ';\n')
11 # write provenance
12 if generatedBy != 'default' :
13 Ontology.write('␣prov:wasGeneratedBy␣alg:' + generatedBy + ';\n')
14 if primarySource != 'default' :
15 Ontology.write('␣prov:hadPrimarySource␣' + primarySource + ';\n')
16 Ontology.write('␣' + prefix + 'coordinates␣' + '"[ ' + str(longitude) + ',␣' +

str( latitude ) + ' ]".\n')
17 # add point related provenance individuals
18 if usedPoint != 'default ' :
19 Ontology.write('alg : ' + generatedBy + '␣prov:used␣mrwa:' + usedPoint + '.\n')
20 if generatedBy != 'default' :
21 Ontology.write('alg : ' + generatedBy + '␣prov:generated␣' + entity + '.\n')
22 if translation != 'default ' :
23 Ontology.write(entity + '␣prov:wasUsedBy␣alg:' + translation + '.\n')� �

Source Code 6.1: Function to write a point in the Turtle format.

6.2.2.2 Write Line String

The function to write a line string in the Turtle format is indicated in Source

Code 6.2. The approach requires the parameters ‘prefix’, ‘lineString’, ‘crs’ and

‘Ontology’. The parameters ‘generatedBy’ and ‘primarySource’ can be used to

add provenance to a line string individual.

Brackets, whitespaces and commas will be removed from the line string at

the function start and the results will be saved in the variable ‘identifier’. The

entity will then be compounded with the variables ‘prefix’ and ‘identifier’. After

that, the individual attributes ‘rdf:type’, ‘owl:NamedIndividual’, ‘sf:LineString’,

‘prov:Entity’ and ‘prov:Location’ will be written into the ontology, followed by
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� �
1 def writeLineString(prefix , lineString , crs , Ontology, generatedBy = 'default',

primarySource = 'default'):
2 identifier = str(re.sub(' [(,) ] ' , ' ' , lineString )) . replace( '␣' , '_')
3 identifier = identifier . translate (table)
4 entity = prefix + identifier
5 firstLine = entity + '␣rdf:type␣owl:NamedIndividual;\n'
6 Ontology.write(firstLine )
7 # each individual is a line string, an entity and a location
8 Ontology.write('␣a␣sf :LineString,␣prov:Entity,␣prov:Location;\n')
9 # each individual is a GeoSPARQL well-known text line string
10 Ontology.write('␣geosparql:asWKT␣"' + lineString + '"^^geosparql:wktLiteral;\n')
11 # write the 'prov:wasGeneratedBy' provenance
12 if generatedBy != 'default' :
13 Ontology.write('␣prov:wasGeneratedBy␣alg:' + generatedBy + ';\n')
14 # write the 'prov:hadPrimarySource' provenance
15 if primarySource != 'default' :
16 Ontology.write('␣prov:hadPrimarySource␣' + primarySource + ';\n')
17 Ontology.write('␣' + prefix + 'CRS␣' + str(crs) + '.\n')
18 # write that the process 'prov:generated' the entity
19 if generatedBy != 'default' :
20 Ontology.write('alg : ' + generatedBy + '␣prov:generated␣' + entity + '.\n')
21 return identifier� �

Source Code 6.2: Function to write a line string in the Turtle format.

the ‘geosparql:asWKT’ line string definition. If the variables ‘generatedBy’ and

‘primarySource’ were set as parameters, then the corresponding provenance can

be set. After that, the coordinate reference system will be added, and the line

string individual definition can be completed.

Furthermore, if the parameter ‘generatedBy’ has not been set to a default

value, then the information will be written into the ontology file that the current

process created for the ontology entity.

6.2.2.3 Write Multi-Line String

The function ‘writeMultiLineString’ will be used to write a multi-line string into

the ontology (see Source Code 6.3). The function uses the parameters ‘prefix’,

‘multiLineString’, ‘crs’ and ‘Ontology’ as the requirements for processing a multi-
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line string individual. The parameters ‘generatedBy’ and ‘primarySource’ can be

used to add provenance.� �
1 def writeMultiLineString(prefix, multiLineString, crs , Ontology, generatedBy =

'default ' , primarySource = 'default'):
2 identifier = str(re.sub(' [(,) ] ' , ' ' , multiLineString)). replace( '␣' , '_')
3 identifier = identifier . translate (table)
4 entity = prefix + identifier
5 firstLine = entity + '␣rdf:type␣owl:NamedIndividual;\n'
6 Ontology.write(firstLine )
7 # each individual is a multi-line string, an entity and a location
8 Ontology.write('␣a␣sf :MultiLineString,␣prov:Entity,␣prov:Location;\n')
9 # each individual is a GeoSPARQL well-known text multi-line string
10 Ontology.write('␣geosparql:asWKT␣"' + multiLineString + '"^^geosparql:

wktLiteral;\n')
11 # write the 'prov:wasGeneratedBy' provenance
12 if generatedBy != 'default' :
13 Ontology.write('␣prov:wasGeneratedBy␣alg:' + generatedBy + ';\n')
14 # write the 'prov:hadPrimarySource' provenance
15 if primarySource != 'default' :
16 Ontology.write('␣prov:hadPrimarySource␣' + primarySource + ';\n')
17 Ontology.write('␣' + prefix + 'CRS␣' + str(crs) + '.\n')
18 # write that the process 'prov:generated' the entity
19 if generatedBy != 'default' :
20 Ontology.write('alg : ' + generatedBy + '␣prov:generated␣' + entity + '.\n')
21 return identifier� �

Source Code 6.3: Function to write a multi-line string in the Turtle format.

At the beginning of the function, brackets, commas and whitespaces will be

removed from the multi-line string, and the results will be saved in the variable

‘identifier’. Then, the entity will be compounded with the ‘prefix’ and ‘identifier’

variables. After that, the individual attributes ‘rdf:type’, ‘owl:NamedIndividual’,

‘sf:MultiLineString’, ‘prov:Entity’ and ‘prov:Location’ will be written into the

ontology, followed by the ‘geosparql:asWKT’ definition for a multi-line string.

If the variables ‘generatedBy’ and ‘primarySource’ are set at the function call,

then the provenance ‘prov:wasGeneratedBy’ and ‘prov:hadPrimarySource’ can be

written. After that, the multi-line string individual definition can be completed

by adding the information of the coordinate reference system. Furthermore, if
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the parameter ‘generatedBy’ has been set, then the ‘prov:generatedBy’ attribute

will used to write that a current process created an ontology entity.

6.2.2.4 Write Entity Content

The function ‘writeEntityContent’ will be used to write a data individual in the

Turtle ontology format (see Source Code 6.4). The function uses the parameters

‘prefix’, ‘entry’, ‘metadata’, ‘geometryID’, ‘generatedBy’, ‘Ontology’, ‘agent’ and

‘dataset’. The parameter ‘thisClass’ can also be used to write the class of an

individual, such as ‘mrwa:SpeedLimit’.� �
1 def writeEntityContent(prefix, entry, metadata, geometryID, Ontology, agent,

dataset, generatedBy = 'default', thisClass = 'default ') :
2 # write type
3 Ontology.write(prefix + entry +'␣rdf:type␣owl:NamedIndividual;\n')
4 Ontology.write('␣a␣prov:Entity,␣')
5 if thisClass != 'default ' :
6 Ontology.write(thisClass + ',␣')
7 Ontology.write('owl:Thing;\n')
8 # write provenance
9 Ontology.write('␣prov:wasGeneratedBy␣alg:' + generatedBy + ';\n')
10 Ontology.write('␣prov:atLocation␣' + prefix + geometryID + ';\n')
11 Ontology.write('␣prov:wasAttributedTo␣' + prefix + agent + ';\n')
12 # add the GeoSPARQL geometry attribute
13 Ontology.write('␣geosparql:hasGeometry␣' + prefix + geometryID + ';\n')
14 # the function 'writeMetadata' will be explained in Source Code 6.5
15 writeMetadata(Ontology=Ontology, metadata=metadata, prefix=prefix)
16 Ontology.write('␣prov:hadPrimarySource␣' + dataset + '.\n')
17 Ontology.write(prefix + agent + '␣prov:contributed␣' + prefix + entry + '.\n')
18 Ontology.write(dataset + '␣prov:wasPrimarySourceOf␣' + prefix + entry + '.\n')
19 Ontology.write('alg : ' + generatedBy + '␣prov:generated␣' + prefix+entry+'.\n')� �

Source Code 6.4: Function to write an entity in the Turtle format.

The processing starts by writing the entity types ‘owl:NamedIndividual’,

‘prov:Entity’ and ‘owl:Thing’ into the ontology. If the variable ‘thisClass’ has

been set as a parameter, then the entity class definition will be added to an indi-

vidual. After that, the data provenance and the geometry features will be written.

The function ‘writeMetadata’ will be processed to include related metadata in
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the Turtle format. After that, the provenance ‘prov:generated’, ‘prov:contributed’

and ‘prov:wasPrimarySourceOf’ will be included in the entity definition.

6.2.2.5 Write Metadata

The function ‘writeMetadata’ in Source Code 6.5 is used to write the metadata

of an individual. For the processing, the function uses the parameters ‘prefix’,

‘metadata’ and ‘Ontology’ and distinguishes between various data types, such as

integers, floating point numbers, strings, lists and dictionaries.� �
1 def writeMetadata(prefix, metadata, Ontology):
2 writtenEntry = False
3 error = False
4 # iterate metadata entries
5 for entry in metadata.properties:
6 if writtenEntry and not error:
7 Ontology.write(';\n')
8 value = metadata.properties[entry]
9 # distinguish between int, float, list and dict (otherwise skip)
10 if (type(value) is int) or (type(value) is float) :
11 Ontology.write('␣' + prefix + entry + '␣' + str(value))
12 elif type(value) is str:
13 value = value.replace( '"' , "'")
14 Ontology.write('␣' + prefix + entry + '␣"' + str(value) + '"')
15 if ( prefix == "osm:") and (entry == 'other_tags'):
16 writeOtherTags(value)
17 elif type(value) is list :
18 jsonValue = json.dumps(value)
19 jsonValue = jsonValue.replace( '"' , "'")
20 Ontology.write('␣' + prefix + entry + '␣"' + str(jsonValue) + '"')
21 elif type(value) is dict:
22 jsonValue = json.dumps(value)
23 jsonValue = jsonValue.replace( '"' , "'")
24 Ontology.write('␣' + prefix + entry + '␣"[' + str(jsonValue) + ']" ')
25 else:
26 error = True
27 continue
28 error = False
29 writtenEntry = True� �

Source Code 6.5: Function to write entity metadata in the Turtle format.
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The differentiation is required, as the different data types require a specific

format in the ontology. For instance, numbers are written as digits, strings and

lists are enclosed in quotation marks, and dictionaries are enclosed in quotation

marks and square brackets. A loop is used to iterate through each entry of the

metadata collection. If an undefined metadata type will be processed, then the

value will be skipped to prevent a syntax error in the ontology.

6.3 Road Network Translation

This section will explain the implementation of the translation methods described

earlier in Section 5.3 and their offsets, which are used to translate MRWA road

sections and MRWA intersections to the shape of the Landgate road network.

Methods 1–7 will then be processed in ascending order. The executing order is

mandatory, as each method is built on top of the previous results to achieve the

best possible road network translation results. The flowchart indicated in Figure

6.3 summarises the processing of the newly created translation methods.2

The overall process of completing a translation is briefly indicated by the

flowchart in Figure 6.4. At the beginning of the flowchart MRWA and Landgate

datasets are selected in the GeoJSON data format and processed into ontologies.

Then, the ontologies are merged and saved in the JavaScript Object Notation for

Linked Data (JSON-LD) data format to simplify the data handling by working

with one ontology file instead of multiple files. Unfortunately, the JSON-LD data

format does not support prefixes. Thus, a created Python script will be triggered

to replace the URIs with the same prefixes used during the introduction of the

Turtle format ontologies. Next, a created script will be executed to extract only

the individuals of the edited JSON-LD ontology file. The extraction will be saved

in an output file, i.e. the actual data input file for the translation script. The

algorithm of the translation script applies the seven custom-created translation
2 The methods expressed with algorithms can be retrieved in Appendix A.5 for the interested

reader.
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Start Input: GeoJSON
data file

Data set (select data from data file)
- MRWA: road sections and intersections
- Landgate: road sections and connectors

Method 1
Translate an MRWA intersections point to a Landgate connector 
vertex:
1. Iterate through Landgate connectors.
2. Get the connector multi-line string and extract the line string.
3. Iterate through each line string vertex.
4. If an MRWA intersection point is within 6.00 m offset to a 

vertex, then translate the intersection point to the vertex.

Method 3
Translate an MRWA road section vertex to an MRWA intersection 
point:
1. Iterate through MRWA road sections.
2. Get the line string of a road section.
3. If a road section is not a left or right carriageway, then iterate 

through each vertex of the line string.
4. If an MRWA intersection point is in 6.00 m offset to a vertex, 

then translate the vertex to the intersection point.

Method 4
Translate a not previous translated MRWA road section vertex to 
a Landgate road section vertex:
1. Iterate through MRWA road sections.
2. Get the line string of a road section.
3. If a road section is not a left or right carriageway, then iterate 

through each vertex of the line string.
4. If 2 Landgate road section vertices are within 25.00 m offset to 

a not translated MRWA vertex and from different road 
sections, then create a boundary polygon of these two vertices. 
If a road section vertex is within the polygon, then do not 
translate. Otherwise translate the MRWA road section vertex 
to the nearest Landgate vertex or interpolated nearest point on 
the line string within 25.00m offset.

Method 2
Translate an MRWA intersections point to a Landgate road section 
vertex:
1. Iterate through Landgate road sections.
2. Get extract line string of road section multi-line string.
3. Iterate through each vertex of the line string.
4. If an MRWA intersection point is in 6.00 m offset to a vertex, 

then translate the intersection point to the Landgate vertex.

Write translated 
MRWA road sections in 
GeoJSON file format.

Write translated 
MRWA intersections in 
GeoJSON file format.

Stop

Method 5
Translate an MRWA intersection point to a translated MRWA 
road section vertex:
1. Iterate through MRWA intersections.
2. Get point of intersection.
3. Get connected MRWA road sections of intersection
4. Translate the intersection point to the nearest translated 

MRWA road section vertex in 16.00 m offset.

Method 6
Translate an MRWA intersection point to the center of 2 
Landgate road sections:
1. Iterate through not translated MRWA intersections.
2. Get the point of the intersection.
3. Get Landgate road sections within 16.00 m offset of the 

intersection point and group the road sections by road name.
4. If a Landgate road section group has 3 or 5 road sections, then 

translate the intersection point to the mean value of the line 
string from the road section in the middle, such as in this 
example either road section 2 or 3.

Method 7
Translate an MRWA road section vertex to an MRWA 
intersection point that was not translated, or translated by the 
method 5 or method 6:
1. Iterate through MRWA intersections.
2. If an intersection is not translated or translated by the 

methods 5 and 6, then get the intersection point.
3. Get MRWA road sections in an offset of 6.20 m to the point.
4. If a road section has been found, then translate the 

intersection to the nearest road section point.

Figure 6.3: Flowchart that describes the translation of MRWA road sections and
MRWA intersections to Landgate road sections and Landgate connectors.

Read original 
MRWA road 
network and 
intersection 
data sets.

Read Landgate 
road asset data 

set.

Create RDF/Turtle 
individuals and 
import into MRWA 
ontology.

Create RDF/Turtle 
individuals  and 
import into Landgate 
ontology.

- Merge ontologies and save 
the result into the JSON-
LD ontology data format.

- Search URI’s and replace 
with defined prefixes.

- Extract individuals from 
JSON-LD file. 

- Apply the road network 
translation algorithm on 
the extracted individuals.

Start

Write translated 
MRWA road 
network and 

intersection data 
sets.

Stop

Figure 6.4: Flowchart that shows the processing cycle to translate MRWA road
sections and intersections.

methods to the dataset and writes the translated MRWA intersections and road

sections back in the original GeoJSON data format.
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6.4 Route Planning

In this section, the newly developed route planner of this dissertation will be

introduced with flowcharts and implemented. Several methods regarding the

route planner will be presented in the route planner’s functionalities. These

methods include displaying data layers on the map, evaluating a planned route,

writing a route into a route ontology, reading a route from a route ontology,

handling currently closed roads and cleaning road network data by means of

harmonising.

6.4.1 Flowchart Route Planning

The route planning approach to calculate a route between two or more nodes

is explained with the flowchart in Figure 6.5. The consideration of specific con-

straints, such as power lines, turning circles, traffic signal sites, rail crossings and

regulatory signs, is not part of the flowchart. The flowchart explains the following

route planner setup:

• selected road stopping places

• a preloaded route

• a multi-node selection route

• a simple route from a start to a target

At the beginning of the flowchart and start of a new route plan, a list of

current planned routes will be cleared so that one or more routes can be added

depending on the route planner configuration. In the first condition statement,

it will be determined whether road stopping places will be taken into account in

the route planning. If that is true, then we will look further on the right-hand

side of Condition Statement 1.

Before the processing of a route with road stopping places at Condition State-

ment 3 (for either a simple route between A and B or for a route selection that
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Start

Stop

① ② ③

Create route 
nodes list of 
selected nodes

True

Add selected start 
and end node to 
route nodes list

FalseTrue

④ Get route 
nodes as list

⑤

False

True

False

Reset route list

Calculate route from start node to 
end node and add result to route list

TrueGet selected 
start/end nodes

Get preloaded 
route

- Calculate route from the selected 
start to the preloaded start

- Calculate route from the selected 
end to the preloaded end 

- Add routes (calculated and 
preloaded) to route list

Activate ‘write 
TTL’ button

FalseTrue

⑥
True

False

Update map 
and evaluation

False

① Evaluate road stopping places
②, ⑤ Is preloaded route
③, ④ Is multi route
⑥ Is valid route

Add road stopping places 
within configured offset in 
between each nodes pair

Add road stopping 
places within 
configured offset in 
between start and 
end node

Calculate route between 
each route node pair

Add each route 
to route list

Figure 6.5: The flowchart describes the basic functionality of the route planner.

consists of more than two nodes), Condition Statement 2 will validate that no

preloaded route is active. If a preloaded route is active, the calculation will be

aborted, as the route is being calculated with a road network that contains only

the road sections of that preloaded route; surrounding road stopping places can-

not be considered since no additional data are available in the corresponding road

network graph.

If the multi-node option is activated at Condition Statement 3, a list of se-

lected nodes will be created. Then, road stopping places within a defined offset

will be identified for each pair of nodes, e.g. between nodes 1 and 2, nodes 2
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and 3 and so on. If the multi-node option is not activated, then road stopping

places will be identified within a defined offset between a selected start node and

an end node. For each identified road stopping place, two nodes will be added

to the route nodes list which represents the start and end of a road section line

string where a road stopping place is present (see Figure 6.6). After the nodes list

has been updated, a route will be calculated for each node pair, and the routes

will be added to the route list. If the route planning is successful, then a route

evaluation will be processed, the information will be updated on the map, and

the option to write the route into the ontology will be activated.

1 2

3

4

Route 1

Route 2

Route 3

1 2

2 3

3 4

Give Way Sign

Stop Sign

Road Stopping Place

Road Section

Route

Overhead Power Line

Route Node

Road Node

Figure 6.6: Processing of a route that considers road stopping places. The algo-
rithm will merge sub-routes 1, 2 and 3 after the route planning has been completed
for node pairs 1–2, 2–3 and 3–4.

If road stopping places are not considered in the route planner (see Condi-

tion Statement 1), then we will move on to Condition Statement 4 to determine

whether a multi-node selection is active. If that is the case, then a route for each

node pair will be calculated. If Condition Statement 4 is not true, meaning that
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only a start and an end node have been selected for the route planning, then the

two selected nodes will be retrieved.

1 2

3 4

Route 1

Route 2

Preloaded
Route

1 2

3 4

2 3

Stop Sign

Road Stopping Place

Road Section

Preloaded Route

Overhead Power Line

Road Node

Figure 6.7: Processing of a route that includes a preloaded route. The algorithm
will merge sub-routes 1 and 2 after the route planning has been completed for
node pairs 1–2 and 3–4.

At Condition Statement 5, we will identified whether a preloaded route is

active. If that is the case, then a route will be calculated from the selected start

node to the beginning of a preloaded route as well as from the end of a preloaded

route to the selected end node (see Figure 6.7). The route planning of a preloaded

route will only consider a road network that contains preloaded road sections, as

indicated with green line strings, to achieve the fastest possible preloaded route

processing. After that, the calculated and preloaded routes will be added to the

route list. Otherwise, if that is not the case, meaning that a preloaded route is

not active, then a simple route will be calculated between a start and an end

node, and the result will be added to the route list.

In any case, a valid route list will be evaluated, and the route planner will

be updated with the results. Every time a valid route is processed, the ‘write

TTL’ button will be activated so that a processed route can be written into the

ontology. Finally, the flowchart stops after the processing.
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6.4.2 Flowchart Edge Weight

This section explains the integration of the configurable route planner constraints

with the help of a flowchart. ‘Overhead power lines’, ‘turning circles’, ‘traffic

signals’, ‘rail crossings’ and ‘regulatory signs’ will be considered by the flowchart

processing, as indicated in Figure 6.8, to simulate the identification of a road edge

weight. At the beginning of the flowchart, a road edge individual and its metadata

will be retrieved. A default edge weight unit will be defined; according to a user

configuration, this is either a distance in metres or a travel time in seconds. At

the first condition statement, it will be identified whether the configuration to

evaluate crossing power lines is active. If that is the case and a road edge will

be crossed by an overhead power line, the number of power lines multiplied by a

configured factor will be added to the road edge weight.

For instance, if a road edge is crossed by two power lines and the configured

factor is either 500m or 40 s, according to the sample edge weight configuration,

2x500m or 2x40 s will be added to the edge weight. After that, at Condition

Statement 2, it will be identified whether a rail crossing occurs at a road section.

If that is the case, then the number of rail crossings at the current road section will

be multiplied by a configured factor, and the result will be added to the respective

edge weight. The principle here works in the same manner as previously described

for overhead power lines. Now, the retrieved ‘distance’, ‘travel time’, ‘count of

rail crossings’ and ‘count of power lines’ will be saved to be available for the route

evaluation.

124



CHAPTER 6. IMPLEMENTATION: ROUTE PLANNING

Start weight = Edge distance or travel time

①
True

False

weight += intersecting power lines * power lines factor

weight += left turn factor

weight += right turn factor

Update left turn, right turn, turning angle, traffic signals, 
stop sign and give way sign information in edge evaluation

weight += traffic signals factor

weight += stop sign factor

weight += give way sign factor

Update edge distance, travel time, rail 
crossings and power lines in edge evaluation

Foreach route 
in calculated 

routes

End 
foreach

Get current road edge

Get road edge of route that 
matches to current road edge

④

⑤

⑥

⑦

③

⑧

⑨

⑩
True

False

result = 1,000,000

Stop

① Active power lines
② Active rail crossings
③ Active turning circle
④ Left turn
⑤ Right turn
⑥ Active red traffic signals
⑦ Active regulatory signs
⑧ Stop sign
⑨ Give way sign
⑩ Closed road edge

②
True

False

weight += rail crossings counter * rail crossing factor

Figure 6.8: The flowchart describes the approach used to calculate a road edge
weight.
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The main part of the flowchart is processed by a foreach loop, which iterates

through planned routes. The loop is a custom approach of the route planner

and can be activated by users that configure it to consider turning circles, traffic

signals and/or regulatory signs. For these constraints, a current and previous

road edge of a planned route will be taken into account. For instance, in order

to add weight at a left or right turn, a previously calculated route that defines

the current road edge as part of a left or right turn must exist. Therefore, once

a route has been calculated, the same route will be calculated again considering

the road sections of a previously planned route to add additional costs at turning

circles, traffic signals and regulatory signs. If the route planner identifies two

identical consecutive routes, then the best possible route has been found.

At the beginning of the loop, a road edge that is the same as the current road

edge will be retrieved from the top of the flowchart. At Condition Statement 3, it

will be checked whether a turning circle has to be taken into account in the route

planning. If that is true and if a current road edge is either a left turn (Condition

Statement 4) or a right turn (Condition Statement 5) compared to the previous

road edge of a planned route, then the weight of a left or right turn will be added

to the edge weight, respectively.

At Condition Statement 6, it will be checked whether the configuration for

traffic signals is active and whether a red light occurs between a current and

previous road edge. If that is the case, then the factor of a red traffic signal will

be added to the current edge weight.

Condition Statement 7 is used to identify if the configuration for regulatory

signs is active. If that is the case and if a stop sign (Condition Statement 8) or

a give way sign (Condition Statement 9) occurs between a current and previous

road edge, then the respective cost factor will be added to the current edge weight.

Before the next loop iteration, the retrieved information about left or right turns,

the turning angle, traffic signals and regulatory signs will be saved for the route

evaluation.
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After the loop, it will be identified at Condition Statement 10 whether a

current road edge is currently closed. If that is true, then the edge weight will

be set to 1,000,000. This very large edge weight will prevent Dijkstra’s algorithm

from using a closed road section in any case as part of the shortest route. The

flowchart processing finishes at the stop.

6.4.3 Data Layer Handling

The data layers visualisation of the route planner map can be compared to graphic

software that allows a layer to be displayed on top of another layer. The visu-

alisation of map content in this paper will be conducted by the GeoTools Java

GIS Toolkit. Figure 6.9 shows a sample road network representation with mul-

tiple layers added to a map panel in the order of traffic signals (green circles),

road edges (black line strings), road nodes (red circles), power lines (orange line

strings) and road stopping places (blue signs) on top.� �
1 int layersIndexCount = mapPane.getMapContent().layers().size() − 1;
2 for (int i = layersIndexCount; i >= 0; i−−) {
3 // remove a layer at index i from the map pane in descending order
4 mapPane.getMapContent().removeLayer(mapPane.getMapContent().layers().get(i));
5 }
6 // add a layer road edges to the map pane, and save the layer index
7 if (layerRoadEdge.getFeatureSource().getFeatures().size() > 0) {
8 mapPane.getMapContent().addLayer(layerRoadEdge);
9 MainView.roadEdgeLayerIndex = mapPane.getMapContent().layers().size() − 1;
10 }� �

Source Code 6.6: Principle of refreshing the map pane content while removing
the current map pane layers and adding layers with features to the map.

Figure 6.10 shows a sample road network with a planned route in blue and

a closed road in pink. The route also contains a start node shown as a yellow

circle, a target node indicated as a green circle and highlighted nodes along the

route indicated as large gray circles. The approach of this thesis to update the

map content removes the current map layers and adds new layers to the map, as
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Traffic Signals

Traffic Signals

Road Stopping Place

Road 
Stopping 
Place

Overhead
Power Lines

Figure 6.9: Map visualisation of a sample road network with the route planner.

Start

DestinationClosed Road

Planed Route

Figure 6.10: Map visualisation of a sample planned route in blue and a closed
road in pink.
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shown in the example regarding road edges in Source Code 6.6. The remaining

layers ‘route edges’, ‘traffic signal sites’, ‘road nodes’, ‘route nodes’, ‘power lines’,

‘road stopping places’, ‘regulatory signs’, ‘start node’, ‘end node’, ‘multi-node’,

‘rail crossings’ and ‘road closures layers’ can be added via the same logic as the

‘road edge layer’ shown in the example of this section.

6.4.3.1 Selected Nodes

The highlighting of a selected start node, end node and multi-node will be done

with a GeoTools filter function. If the ‘start’, ‘end’ or ‘multi’ button is pressed at

the route planner main panel, then an ‘on mouse clicked’ event will be activated

to record the coordinates of the mouse clicks on the map.

a) b)

Start

Destination

Multi Node 1

Multi Node 2

Multi Node 3

Figure 6.11: Selected nodes from a yellow start node to a green target node are
indicated in a), whereby b) shows selected yellow multiple nodes for the processing
of a multi-node route.

An example is given in Figure 6.11, whereby Figure 6.11 a) shows a simple

route selection with a start and target node and Figure 6.11 b) shows multiple

nodes selected for a route with multiple destinations. After the map is clicked,

an area of 21x21 pixels will be filtered to identify the map features in the clicked

area. If multiple features are present inside the filtered area, then the nearest

element will be selected. For instance, Figure 6.11 a) shows a selected start node

highlighted in yellow and a selected end node highlighted in green. The selected
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multi-nodes are highlighted in yellow, as indicated in Figure 6.11 b), whereby the

node selection order will be taken into account in the route planning.

6.4.4 Route Processing

This section will explain important technical details of the route processing, which

includes the route calculation process and the evaluation process. After that, we

will learn how to write a planned route into the ontology and how to load the data

back into the route planner. Furthermore, an approach will be introduced to clean

the road network data, which means that road section vertices that represent the

same location will share the same coordinates after the processing.

6.4.4.1 Calculate Route

To consider left turns, right turns, traffic signal sites and regulatory signs, a new

approach that evaluates and calculates a route multiple times until the best route

is found has been designed (see Source Code 6.7).

At the beginning of the source code, a route list will be cleared, and a Dijkstra

shortest pathfinder object will be initialised in the variable ‘pf’. Then, a loop will

be processed until two of the most current routes are equal or the configured route

processing limit has been reached with the value of the variable ‘MaxRouteCount’,

whereby the default value will be set to 10. That means even if the ninth and tenth

calculated routes are different, the tenth will be taken as the best possible route.

At each loop iteration, a new route will be calculated. After the calculation, the

route direction will be validated for accuracy. If it is not correct, then the order

will be reversed. In any case, a current processed route will be added to the

routes list. After the loop processing, the best possible route will be saved in the

variable ‘result’, which refers to the last processed route.
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� �
1 routeList . clear () ;
2 DijkstraShortestPathFinder pf = null;
3 for (int i = 0; i < MaxRouteCount; i++) {
4 pf = new DijkstraShortestPathFinder(graph, routeStartNode, weighter);
5 pf. calculate () ;
6 Path route = pf.getPath(routeEndNode);
7 ArrayList<BasicEdge> routeEdges = (ArrayList<BasicEdge>) route.getEdges();
8 // If route is in wrong direction, then reverse it
9 if (! routeEdges.get(0).getNodeA().equals(routeStartNode) && !routeEdges.get

(0).getNodeB().equals(routeStartNode)) {
10 Collections . reverse(routeEdges);
11 }
12 routeList .add(route);
13 // If the last 2 routes are equal at index 'i' and index 'i-1', then

the best possible route has been identified and the process ends
14 if ( i > 0 && routeList.get(i).equals(routeList .get( i − 1))) {
15 i = MaxRouteCount;
16 }
17 }
18 result = routeList.get(routeList . size () − 1);� �

Source Code 6.7: If left turns, right turns, traffic signals and/or regulatory signs
(stop and give way) are taken into account in the route planning, then a route
will be planned multiple times until it matches with a previously planned route
or the configurable route processing limit has been reached.

6.4.4.2 Evaluate Route

An evaluation object is maintained continuously during the calculation of a route

in the edge weighter function of the route planner. The evaluation object collects

general route information, such as the travel time, distance, number of power

lines, regulatory signs, rail crossings, road stopping places, towns and traffic sig-

nals. In addition, it contains information about a used road edge, which includes

the distance, travel time, traffic signal state, left turns, right turns, turn angles,

give way signs, stop signs, road stopping places, start/end SLK, town name and

common usage name. The road edge evaluation object keeps track of possible

extra travel time and extra distance. For instance, a route evaluation from the

Federal Street in Nannup to the Main Street in Manjup of a synthetic dataset is

indicated in the evaluation panel in Figure 6.12.
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Figure 6.12: Sample evaluation of a route with a distance of about 262 m that
contains one give way sign, one left turn, one road stopping place and four road
edges and navigates through two towns.

In addition to the mentioned information, the figure shows a description of

the town ‘Nannup’ that was retrieved from DBpedia3 with the SPARQL query,

as indicated next:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix dbo: <http://dbpedia.org/ontology/>

select ?label where {

<http://dbpedia.org/resource/ + < town > + ,_Western_Australia>

dbo:abstract ?label .

FILTER (lang(?label) = ’en’)

}

3 Source: ‘’http://dbpedia.org/resource/Nannup,_Western_Australia’
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In the SPARQL query above, the hash value ‘<town>’ will be replaced at

each DBpedia request by a current town or suburb. Possible whitespaces will be

replaced by an underscore as required by the DBpedia SPARQL endpoint. For

instance, the suburb ‘City Beach’ can be parsed as ‘City_Beach’ by DBpedia.

6.4.4.3 Write Route into Ontology

After a route has been successfully calculated and evaluated, it can be written into

the ‘Route.owl’ ontology file. The process that writes a route into the ontology is

indicated in Algorithm 6.3. At the beginning of the algorithm, a route evaluation

object is parsed to the algorithm, and the route ontology is defined as an output.

After that, a foreach loop that iterates through each road section individual of

the route evaluation object is processed. The first and last road section of a route

will be marked as a key node.4 Each road section will be written into the output

file with the use of an ascending identifier.

Algorithm 6.3: Example of a line string and data property extraction
from a road section individual.
1 RouteEvaluation ←− load the route evaluation object
2 File ←− ’Route.owl’ ontology file as output file
3 foreach RoadSection in RouteEvaluation do
4 if RoadSection is first or last entry in RouteEvaluation then
5 RoadSection ←− set as key node and add first/last point as WKT
6 end
7 File ←− write RoadSection as part of route
8 end

For instance, let us consider a sample route from a start node to a target node,

as indicated in Figure 6.13. As one can see, the route consists of three road sec-

tions. After a click on the ‘write TTL’ button at the main panel of the route plan-

ner, the algorithm will write route-related individuals into the ontology, as sum-

marised in Table 6.3. Then the created individual ‘alg:processRouteGenerator’

will be used as provenance to inform about what algorithm created the data. The
4 The key node marking simplifies the identification of a route; by definition, a complete route

is always in between two key nodes.
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Start

Destination

Figure 6.13: Arbitrary route from a yellow start node to a green target node.

individuals with the prefix ‘route’ contain the actual route information, while in-

dividuals with the prefix ‘mrwa’ refer to original entries of the MRWA ontology.

Table 6.3: List of route ontology individuals created for the route in Figure 6.13.

Individuals
alg:processRouteGenerator
route:MRWA
route:Route_FROM_YorkSt_10654371_TO_EldoradoSt_10654366_000001
route:Route_FROM_YorkSt_10654371_TO_EldoradoSt_10654366_000002
route:Route_FROM_YorkSt_10654371_TO_EldoradoSt_10654366_000003
mrwa:LineCoordinates_115.83275919_-31.89460181_115.83403647_-31.89460712
mrwa:LineCoordinates_115.83401817_-31.89840850_115.83402961_-31.89658192
mrwa:LineCoordinates_115.83402961_-31.89658192_115.83403647_-31.89460712
mrwa:MRWA_RoadSection_EldoradoSt_10654366
mrwa:MRWA_RoadSection_YorkSt_10654371
mrwa:MRWA_RoadSection_YorkSt_10654372
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6.4.4.4 Read Route from Ontology

The function ‘getOwlRoutes’ will read an ontology with saved routes and make

the content available for the route planner, as indicated in Algorithm 6.4. At the

beginning of the algorithm, the route ontology will be loaded into the variable

‘Ontology’. Then, an array list for the line strings of a route will be defined with

the variable ‘RouteLineStrings’, and a list with the variable name ‘Route’ will be

initialised as a container for the routes.

After that, the ontology will be iterated with a foreach loop, and each route

individual that contains ‘Route_FROM_’ will be retrieved with its classes, prop-

erties and object properties. Then, a set of Boolean variables will be set to the

initial value ‘false’. The Boolean variables will be used to identify whether a cur-

rent road section object is a key node, has a previous node, has a next node and

is the start of a series of route nodes. Every time a route individual is identified,

the following activities will be processed:

1. A foreach loop will be used to iterate through all classes of a route individual

to identify whether a current individual is a key node (see lines 8–12). If

a key node is found, then the variable ‘KeyNode’ will be set to the value

‘true’.

2. Another foreach loop iterates through the object properties of an individual

(see lines 13–21). If an individual has no ‘route:hasPreviousRoute’ or no

‘route:hasNextRoute’ object property, then it is either the start or end of a

route, respectively. Each individual has a ‘prov:hadPrimarySource’ object

property that establishes a connection between a route individual and an

MRWA individual.

3. A further foreach loop will be used to iterate through individual properties

to identify the start and target nodes of a route (see lines 22–29). A route

is completed when a key node has been found and no next route individual

is available. If that is the case, the collected route line strings, the start
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node and the target node will be added to the list of routes. After that, the

list ‘RouteLineStrings’ will be cleared, so that individuals of the next route

can be added.

Once the algorithm stops iterating through the individuals, a list of routes will

be added to the main panel as indicated in Figure 6.14. A so-called ‘list selection

listener’ will then be activated to enable a route selection. If a user selects a

route, then the map panel will be reset, the selected route will be displayed on

the map, and a route evaluation will be processed.

Figure 6.14: The panel shows four selectable routes in the route selection panel.

6.4.4.5 Closed Roads

The functionality of displaying closed roads consists of two stages. The first

stage requires downloading currently closed road data, and the second stage is

related to the integration of the downloaded data in the route planner. The

process downloading closed road data is indicated in Source Code 6.8. After the

initialisation of an input stream, the GeoJSON file that contains the currently

closed road data will be downloaded. The download process will be conducted

within a try–catch block to prevent possible download errors. If the procedure is

successful, then a try–catch statement will be used to transfer the road closure

data from the stream to the hard drive. If the file saving approach is successful,

then a message will inform the user about the successful download process, which

will further enable access to the closed road data in the route planner.
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Algorithm 6.4: Overall processing of the function ‘getOwlRoutes’ that
reads a route ontology file back into the route planner.
1 Ontology ←− read the ‘Route.owl’ ontology and sort individuals by name
2 RouteLineStrings ←− create empty array list
3 Route ←− list of routes
4 foreach Individual in Ontology do
5 if Individual contains ’Route_FROM_’ then
6 Classes, Properties, ObjectProperties ←− get from Individual
7 KeyNode, PreviosRoute, NextRoute, PrimarySource,

StartSeries ←− set to false
8 foreach Class in Classes do
9 if Class ’KeyNode’ in Classes then

10 KeyNode ←− set true
11 end
12 end
13 foreach ObjectProperty in ObjectProperties do
14 if ObjectProperty is ’route:hasPreviousRoute’ then
15 PreviosRoute ←− set true
16 else if ObjectProperty is ’route:hasNextRoute’ then
17 NextRoute ←− set true
18 else if ObjectProperty is ’prov:hadPrimarySource’ then
19 RoadSection ←− get road section of MRWA ontology
20 RouteLineStrings ←− add line string of RoadSection
21 end
22 foreach Property in Properties do
23 if Property is ’geosparql:asWKT’ then
24 if KeyNode and not PreviousRoute then
25 Start ←− set point
26 else if KeyNode and not NextRoute then
27 Target ←− set point
28 end
29 end
30 if KeyNode not nextRoute then
31 Route ←− add RouteLineStrings, From and Target
32 RouteLineStrings ←− empty for next route
33 end
34 end
35 end

With a click on the button ‘add road closures’, the downloaded closed road file

will be read from the hard drive and integrated into the route planner, as indicated
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� �
1 InputStream inputStream = null;
2 try {
3 // Source: https://catalogue.data.wa.gov.au/dataset/mrwa-road-

closures-closed
4 String downloadUrl = "https://opendata.arcgis.com/datasets/8

b47dad5f85948f6b2b8c5871b0a6987_5.geojson";
5 roadClosures.setText("Download:␣\n" + downloadUrl);
6 inputStream = new URL(downloadUrl).openStream();
7 } catch (IOException ex) {
8 ex.printStackTrace();
9 roadClosures.setText("Error:␣Download␣not␣possible"); }
10 // write the downloaded data from the stream onto the hard drive
11 try {
12 String fileDestination = "Road_Closures__Closed.geojson";
13 Files .copy(inputStream, Paths.get(fileDestination) , StandardCopyOption.

REPLACE_EXISTING);
14 roadClosures.setText(roadClosures.getText() + "\n" + "File␣Saved:␣" +

fileDestination);
15 } catch (IOException ex) {
16 ex.printStackTrace();
17 roadClosures.setText(roadClosures.getText() +"\n"+"Error:␣File␣Not␣Saved");}� �

Source Code 6.8: Download current road closure data from the Western
Australian OGD portal.

Algorithm 6.5: Approach to read closed roads into the route planner.
1 RoadClosures ←− read ‘Road_Closures__Closed.geojson’
2 FeaturesCollection ←− get features of RoadClosures
3 if FeaturesCollection is not empty then
4 ClosedRoadsList ←− get line strings from FeaturesCollection
5 RoadClosuresLayer ←− create layer of FeaturesCollection
6 InformationPanel ←− update RoadClosures
7 Map ←− update RoadClosuresLayer
8 end

in Algorithm 6.5. In detail, the road closure file will be read, and a features

collection will be created with the internal GeoTools function ‘FeatureJSON’. If

a feature collection with content exists, then a list of line strings that represent

the closed roads and a layer that can be displayed on the map will be created.

After that, the closed roads layer can be added to the map, and the information

on the current road closures can be updated. For instance, Figure 6.15 shows
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listed road closures, with the information of a border restriction and a closed

road indicated on the map as pink road edges.

Closed Road

Figure 6.15: Closed road data indicated on the map with pink line strings and
summarised in the text panel.

6.4.4.6 Clean Road Network

When working with real-world road network data, road nodes that describe the

same intersection may not share the same coordinates. As a result, the GeoTools

graph generator considers nodes with different coordinates as different assets.

Although GeoTools provides a configurable tolerance for nearby nodes with its

graph generator function, the functionality is limited and does not always the

desired result.

For example, let us consider the sample road network in Figure 6.16. In the

left image, the road nodes of the black road section and the highlighted blue road

section are not connected, as the coordinates are not equal. In the middle image,

a GeoTools graph builder tolerance has been configured and activated so that

a line string point has been added to connect the road edge to a nearby road

node. However, the disadvantage of the tolerance functionality is that the route

planner can interfere with the information of a left or right turn in some cases as

indicated in the example. To eliminate this kind of error, a Python script that
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Figure 6.16: Road network that shows a graph with zero tolerance on the left, a
road network with a configured graph tolerance in the middle, and a road network
that was cleaned by a developed Python script on the right.

merges line string coordinates within an offset of 2m into the same values was

developed, as indicated in Algorithm 6.6.

Algorithm 6.6: Translate MRWA road network data to match data
within a defined offset.
1 RoadNetwork ←− read ‘Road_Network_MRWA.geojson’
2 PointsList ←− initialise empty list
3 Offset ←− set to 0.0002 longitude and 0.0002 latitude, about 2m
4 foreach Entry in RoadNetwork do
5 LineString ←− get of Entry
6 FirstPoint ←− get first point of LineString
7 if FirstPoint within Offset of a point in PointsList then
8 FirstPoint ←− translate to found point
9 end

10 FirstPoint ←− add to PointsList
11 if LastPoint within Offset of a point in PointsList then
12 LastPoint ←− translate to found point
13 end
14 LastPoint ←− add to PointsList
15 LineString ←− update with FirstPoint and LastPoint
16 end
17 RoadNetwork ←− overwrite ‘Road_Network_MRWA.geojson’

At the beginning of the algorithm, a file with MRWA road network data will

be read, and a list of point coordinates that contains only the first and last

coordinates of a road section will be loaded. Then, the offsets in longitude and

latitude will be defined. After that, a foreach loop will iterate through the data
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entries and retrieve the first and last points (vertex) of each road edge line string.

For each of the retrieved points, a condition statement will verify whether a point

that is within the defined offset of 0.0002 longitude and 0.0002 latitude exists

in the list of points. If that is the case, then the first and/or last point will be

translated to a nearby point of the same intersection. After that, both points

will be added to the list of points, and the original line string will be updated.

Once the processing of the foreach loop is completed, the road network file will

be overwritten with the updated dataset. The result is a clean road network with

matching road nodes, as indicated in the right image of Figure 6.16.

6.5 Chapter Summary

This chapter discussed the principles of new methods that have been designed,

applied and developed during the research of this thesis. The methods were

grouped into three sections, namely data creation, road network translation and

route planning.

The first section on ‘data creation’ treated the automated creation of ontol-

ogy data that can be retrieved in the GeoJSON data format from the employed

MRWA, Landgate and OSM datasets. The data creation approach was explained

with flowcharts and covered original road network data, as well as translated road

network datasets. Important functionalities that are required for the automated

data individuals data creation with the use of the Turtle syntax were indicated

with source codes where possible and with algorithms for complex procedures.

The second section on ‘road network translation’ was about the implemen-

tation of a road network translation algorithm that was optimised to translate

MRWA road sections and intersections to the shape of Landgate road sections,

roundabouts and roundabout connectors. In the scope of that section, a flowchart

was introduced that explained the different translation methods in detail.

The third section on ‘route planning’ covered the main functionalities of the

route planner, which included route processing and edge weight determination.
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The road network data were cleaned so that road assets that describe the same

node shared the same coordinates. The handling of road map layers was ex-

plained, and various road map layers were introduced, such as road edges, road

nodes and road stopping places. Planned routes were written into a route ontol-

ogy and loaded back into the route planner as selectable preloaded routes.
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Chapter 7

Evaluation

7.1 Chapter Introduction

In this chapter, the road network translation, road network ontology conflation

and route planner will be evaluated with several experiments. The results of

this chapter are a significant contribution of this dissertation, as the analysis of

the results will lead to a conclusion about the suitability of the Semantic Web

as an efficient processing method of heterogeneous road network data. In order

to evaluate this research, the road network translation will indicate two small

road network selections and one larger-scaled road network to validate the seven

designed translation methods. The road network conflation will be evaluated at a

roundabout and a road section, with datasets from MRWA, Landgate and OSM.

The route planner will be evaluated with an inner city route, a large-scale route,

a route with overhead power lines, a route with rail crossings and a route that

includes a closed road on the track.

7.2 Road Network Translation

Early road network translation results were published by Niestroj et al. (2019).

Compared to the published results, the road network translation approach of this
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thesis enables the application on a larger-scale road network. In the background,

the road network examples in this section will show a street layer that is based

on an Esri dataset,1 which is available for use in QGIS after the installation of

the HCMGIS2 plugin.

7.2.1 Road Network Selection 1

The road network indicated in Figure 7.1 is used as the first example to evaluate

the road network translation approach of this thesis and shows 10 numbered

MRWA intersections and their related road sections. The red line strings indicate

Landgate road sections, roundabouts and roundabout connectors, and the black

line strings indicate MRWA road sections. One can see that the visualisation is

not harmonised, as the road network shows discrepancies in comparing the shape

of the black and red line strings in some cases, such as at the roundabout.

Figure 7.1: Road network selection 1 with road assets from Landgate and MRWA
with original coordinates.

1 https://www.arcgis.com/home/webmap/viewer.html
2 https://plugins.qgis.org/plugins/HCMGIS/
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In Figure 7.2, the same road network selection is indicated after the application

of the translation algorithm. The figure shows that the red line strings are barely

visible, which means that the road centreline representation of the Landgate and

MRWA datasets is harmonised at the selected area of interest.

Figure 7.2: Road network selection 1 with road assets from Landgate and MRWA.
The road assets of MRWA are indicated with translated coordinates.

Table 7.1: Distance and translation method evaluation of MRWA intersections
from Figure 7.1 into Figure 7.2.

ID
Original Translated

Translation Distance / mLongitude / ° Latitude / ° Longitude / ° Latitude / °
1 115.70904402 –31.68000999 115.70905800 –31.68001900 Method 2 1.65
2 115.70978803 –31.67990101 115.70978800 –31.67990100 Method 2 0.05
3 115.71044575 –31.68025979 115.71047100 –31.68030600 Method 6 5.61
4 115.71100117 –31.67997513 115.71099600 –31.67997500 Method 6 0.44
5 115.71133003 –31.68027599 115.71133000 –31.68027700 Method 2 0.14
6 115.70950098 –31.68085502 115.70952400 –31.68087400 Method 1 3.05
7 115.71053697 –31.68094002 115.71055800 –31.68093900 Method 2 1.98
8 115.71092100 –31.68102900 115.71092202 –31.68102604 Method 2 0.36
9 115.71105497 –31.68110903 115.71105800 –31.68110500 Method 2 0.58
10 115.71016099 –31.68142499 115.71018100 –31.68143900 Method 2 2.48

The evaluation of the translated MRWA intersections (green circles) is indi-

cated in Table 7.1. The table shows that the algorithm translated five inter-
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sections with a distance of less than 0.59m, four intersections were translated

with a distance of approximately 1.98m to 3.05m, and the intersection with ID

3 was translated with a distance of approximately 5.61m after the application

of the Translation Method 6. The reason for the larger translation distance at

Intersection 3 is related to the position of the original intersection (see Figure

7.1). The intersection was previously connected to a road edge link, and after

the application of the translation algorithm, the intersection was translated to

the centre location of a road edge. Thus, in that particular case, a translation

distance of above 5m could be considered appropriate.

An evaluation of the road section vertices that occur between the labelled

intersections is given in Table 7.2 and provides the translation information of

45 road section vertices. The evaluation of the road section from Intersection

6 to an indiscernible intersection has also been evaluated, as the Landgate and

MRWA datasets indicated a larger visible discrepancy between the red Landgate

and black MRWA road section data. Overall, the evaluation of Table 7.2 can be

summarised as follows:

• Twenty-seven vertices were translated with less than 1m, whereby two of

them were not translated due to the application of Translation Method 4.0.

• Ten vertices were translated between 1.00m and 2.00m.

• One vertex was translated with about 2.19m.

• Three vertices were translated with more than 3.00m, with the largest

translation being about 3.92m.

• Four vertices were not translated, as they were part of a left or right car-

riageway, which was not supported by the translation algorithm.

After evaluating the translation values, it can be said that in most cases, a

translation occured with less than 2.00m. The values seem to be reasonable
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Table 7.2: Distance and translation method evaluation of MRWA road sections
from Figure 7.1 into Figure 7.2.

Between
Intersections

Original Translated
Longitude / ° Latitude / ° Longitude / ° Latitude / ° Translation Distance / m

1 and 2 115.70904420 –31.68001027 115.70905761 –31.68001929 Method 3.2 0.04
1 and 2 115.70945322 –31.67990751 115.70946233 –31.67991836 Method 4.1 1.48
1 and 2 115.70978757 –31.67990147 115.70978844 –31.67990128 Method 3.2 0.07
1 and 6 115.70904420 –31.68001027 115.70905761 –31.68001929 Method 3.2 0.04
1 and 6 115.70910020 –31.68019098 115.70911501 –31.68018529 Method 4.2 1.54
1 and 6 115.70923526 –31.68047556 115.70924591 –31.68046957 Method 4.2 1.21
1 and 6 115.70950153 –31.68085502 115.70952448 –31.68087374 Method 3.1 0.05
2 and 3 115.70978757 –31.67990147 115.70978844 –31.67990128 Method 3.2 0.07
2 and 3 115.71002181 –31.67996351 115.71002193 –31.67996315 Method 4.2 0.04
2 and 3 115.71015330 –31.68002454 115.71015395 –31.68002442 Method 4.1 0.06
2 and 3 115.71032780 –31.68014267 115.71032860 –31.68014247 Method 4.1 0.08
2 and 3 115.71044026 –31.68025046 115.71044333 –31.68026265 Method 3.2 1.16
2 and 3 115.71049763 –31.68034855 115.71049763 –31.68034855 Method 4.0 0.00
3 and 4 115.71044600 –31.68026000 - - No Translation -
3 and 4 115.71096900 –31.67993300 - - No Translation -
3 and 7 115.71049763 –31.68034855 115.71049763 –31.68034855 Method 4.0 0.00
3 and 7 115.71055088 –31.68047803 115.71055759 –31.68047582 Method 4.2 0.68
3 and 7 115.71057467 –31.68061958 115.71058900 –31.68061929 Method 4.2 1.36
3 and 7 115.71056470 –31.68081439 115.71057961 –31.68081665 Method 4.2 1.43
3 and 7 115.71053716 –31.68094002 115.71055786 –31.68093902 Method 3.2 0.02
4 and 3 115.71103600 –31.68000800 - - No Translation -
4 and 3 115.71049800 –31.68034900 - - No Translation -
4 and 5 115.71098634 –31.67996150 115.71099648 –31.67997525 Method 7 1.80
4 and 5 115.71132142 –31.68026913 115.71132997 –31.68027722 Method 3.2 1.12
4 and 5 115.71133030 –31.68027654 115.71132997 –31.68027722 Method 3.2 0.07
5 and 8 115.7113303 –31.68027654 115.71133000 –31.68027722 Method 3.2 0.07
5 and 8 115.7111021 –31.68042679 115.71109770 –31.68042402 Method 4.1 0.51
5 and 8 115.7110644 –31.68048123 115.71106420 –31.68047259 Method 4.1 0.96
5 and 8 115.71104637 –31.68056431 115.71104873 –31.68056484 Method 4.2 0.23
5 and 8 115.71092238 –31.68102649 115.71092126 –31.68102917 Method 3.2 0.06

6 and n.d. 115.70950153 –31.68085502 115.70952448 –31.68087374 Method 3.1 0.05
6 and n.d. 115.70911759 –31.68118882 115.70914211 –31.68121313 Method 4.2 3.56
6 and n.d. 115.70883210 –31.68155144 115.70887323 –31.68155599 Method 4.1 3.92
6 and 10 115.70950153 –31.68085502 115.70952448 –31.68087374 Method 3.1 0.05
6 and 10 115.70987376 –31.68122826 115.70986582 –31.68121851 Method 4.1 1.32
6 and 10 115.71016081 –31.68142554 115.71018118 –31.68143920 Method 3.2 0.06
7 and 8 115.71053716 –31.68094002 115.71055786 –31.68093902 Method 3.2 0.02
7 and 8 115.71085970 –31.68099977 115.71085703 –31.68101156 Method 3.2 1.34
7 and 8 115.71092238 –31.68102649 115.71092126 –31.68102917 Method 3.2 0.06
7 and 10 115.71016081 –31.68142554 115.71018118 –31.68143920 Method 3.2 0.06
7 and 10 115.71042452 –31.68112092 115.71044595 –31.68112830 Method 4.1 2.19
7 and 10 115.71053716 –31.68094002 115.71055786 –31.68093902 Method 3.2 0.02
8 and 9 115.71092238 –31.68102649 115.71092126 –31.68102917 Method 3.2 0.06
8 and 9 115.71095834 –31.68104159 115.71092126 –31.68102917 Method 3.2 3.85
8 and 9 115.71105524 –31.68110875 115.71105831 –31.68110462 Method 3.2 0.04
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considering that the MRWA and Landgate road network data are collected by

independent authorities.

7.2.2 Road Network Selection 2

The road network selection indicated in Figure 7.3 shows a second sample road

network to evaluate the translation algorithm of this thesis. The road network

shows 10 numbered MRWA intersections with their connected road sections. The

road asset colour notation is defined as in the previous example, meaning that

the Landgate data are indicated with red line strings, the MRWA road sections

are visualised with black line strings, and the original MRWA intersections are

highlighted as yellow circles.

The road network selection in the example shows an Intersection 7 surrounded

by two Landgate road sections without a connecting MRWA side road. The reason

behind placing an intersection at a straight road here is related to the road name

change from ‘Seaham Way’ to ‘Anchorage Drive North’ in the driving direction

from Intersection 6 and through Intersection 7 into Intersection 8.

Table 7.3: Distance and translation method evaluation of MRWA intersections
from Figure 7.3 into Figure 7.4.

ID
Original Translated

Translation Distance / mLongitude / ° Latitude / ° Longitude / ° Latitude / °
1 115.70253197 –31.67799996 115.70253100 –31.67803000 Method 2 3.37
2 115.70335174 –31.67758646 115.70333800 –31.67760000 Method 2 1.97
3 115.70257598 –31.67847101 115.70255200 –31.67846400 Method 2 2.36
4 115.70374502 –31.67821801 115.70374500 –31.67822700 Method 1 1.03
5 115.70503236 –31.67753101 115.70502900 –31.67753300 Method 2 0.37
6 115.70266098 –31.67925702 115.70266100 –31.67925700 Method 2 0.05
7 115.70364800 –31.67948300 - - No Translation -
8 115.70429696 –31.67885203 115.70428800 –31.67886000 Method 6 1.20
9 115.70530596 –31.67827904 115.70532900 –31.67828500 Method 1 2.24
10 115.70563097 –31.67901298 115.70564500 –31.67902100 Method 2 1.58

The same road network selection after the application of the translation algo-

rithm is displayed in Figure 7.4. One can see that the black line strings dominate

the road network representation, which is an indication of good road network
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Figure 7.3: Road network selection 2 with road assets from Landgate and MRWA.

Figure 7.4: Road network selection 2 with road assets from Landgate and MRWA.
The road assets of MRWA are indicated with translated coordinates.
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data harmonisation between the MRWA and Landgate datasets. The evaluation

of the translated green intersections is indicated in Table 7.3. The table indi-

cates that the algorithm translated the intersections with Methods 1, 2 and 6.

The translated intersections include two translations of less than 0.38m, four

translations between 1.00m and less than 2.00m and three translations of more

than 2.00m. The largest translated distance is about 3.37m. Intersection 7 has

not been translated, as it was identified by trial and error that the best possible

approach to handle the case of an MRWA road section between two Landgate

road sections is to not translate it. It has also been identified, that MRWA and

Landgate use their own guidelines for the description of the road networks.

An evaluation of nine road sections occuring between the numbered intersec-

tions is indicated in Table 7.4, which shows the translation of 51 road section

vertices. Overall, the translation table can be summarised as follows:

• Twenty-three vertices were translated with less than 1m, while six of the

vertices were not translated due to the application of Translation Method

4.0.

• Seventeen vertices were translated between 1m and 2m.

• Five vertices were translated between 2m and 3m.

• Six vertices were translated with more than 3m, that includes the two

largest translations with distances of about 12.45m and 10.30m.

After evaluating the translation values, in most cases, it can be said in most

cases that a translation occured with less than 2.00m, meaning that both author-

ities (MRWA and Landgate) are capturing road network data features at similar

locations.
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Table 7.4: MRWA road section evaluation from Figure 7.3 into Figure 7.4.

Between
Intersections

Original Translated
Longitude / ° Latitude / ° Longitude / ° Latitude / ° Translation Distance / m

1 to 3 115.70257598 –31.67847101 115.70255237 –31.67846428 Method 3.2 2.36
1 to 3 115.70254533 –31.67810271 115.70254088 –31.67810308 Method 4.2 0.42
1 to 3 115.70253508 –31.67801341 115.70253064 –31.67803027 Method 3.2 1.92
1 to 3 115.70253242 –31.67800051 115.70253064 –31.67803027 Method 3.2 3.31
2 to 4 115.70374511 –31.67821773 115.70374516 –31.67822729 Method 3.1 1.06
2 to 4 115.70372950 –31.67819888 115.70374516 –31.67822729 Method 3.1 3.49
2 to 4 115.70358736 –31.67794926 115.70357493 –31.67795644 Method 4.2 1.42
2 to 4 115.70335174 –31.67758646 115.70333823 –31.67759994 Method 3.2 1.97
3 to 4 115.70257598 –31.67847101 115.70255237 –31.67846428 Method 3.2 2.36
3 to 4 115.70268304 –31.67847742 115.70255237 –31.67846428 Method 4.1 12.45
3 to 4 115.70288480 –31.67848263 115.70288505 –31.67847449 Method 4.2 0.91
3 to 4 115.70312911 –31.67847266 115.70312956 –31.67847707 Method 4.2 0.49
3 to 4 115.70325648 –31.67845216 115.70325804 –31.67845921 Method 4.2 0.80
3 to 4 115.70336729 –31.67842014 115.70337039 –31.67842909 Method 4.2 1.04
3 to 4 115.70347069 –31.67837676 115.70347596 –31.67838692 Method 4.2 1.23
3 to 4 115.70361398 –31.67829450 115.70362150 –31.67830677 Method 4.2 1.54
3 to 4 115.70374511 –31.67821773 115.70374516 –31.67822729 Method 3.1 1.06
4 to 5 115.70374511 –31.67821773 115.70374510 –31.67822729 Method 3.1 1.06
4 to 5 115.70378116 –31.67819687 115.70374516 –31.67822729 Method 3.1 4.80
4 to 5 115.70390048 –31.67812348 115.70390379 –31.67812760 Method 4.2 0.55
4 to 5 115.70406866 –31.67800334 115.70403587 –31.67802024 Method 4.1 3.63
4 to 5 115.70428680 –31.67784166 115.70437401 –31.67778608 Method 4.1 10.31
4 to 5 115.70451675 –31.67769278 115.70451771 –31.67769500 Method 4.2 0.26
4 to 5 115.70459361 –31.67766085 115.70459417 –31.67766261 Method 4.2 0.20
4 to 5 115.70503236 –31.67753101 115.70502937 –31.67753322 Method 3.2 0.37
4 to 8 115.70374511 –31.67821773 115.70374516 –31.67822729 Method 3.1 1.06
4 to 8 115.70393543 –31.67844548 115.70393543 –31.67844548 Method 4.0 -
4 to 8 115.70429723 –31.67885166 115.70428824 –31.67885980 Method 7 1.24
5 to 9 115.70503236 –31.67753101 115.70502937 –31.67753322 Method 3.2 0.37
5 to 9 115.70530651 –31.67827858 115.70532872 –31.67828468 Method 3.1 2.21
6 to 7 115.70266053 –31.67925693 115.70266130 –31.67925667 Method 3.2 0.08
6 to 7 115.70294483 –31.67929581 115.70294455 –31.67929695 Method 4.2 0.13
6 to 7 115.70314897 –31.67936591 115.70315836 –31.67937131 Method 4.1 1.07
6 to 7 115.70336171 –31.67945942 115.70336171 –31.67945942 Method 4.0 -
6 to 7 115.70347792 –31.67950106 115.70347792 –31.67950106 Method 4.0 -
6 to 7 115.70355570 –31.67950655 115.70355570 –31.67950655 Method 4.0 -
6 to 7 115.70363100 –31.67949364 115.70361965 –31.67949883 Method 4.2 1.22
6 to 7 115.70364811 –31.67948340 115.70364802 –31.67948303 Method 7 0.04
7 to 8 115.70364811 –31.67948340 115.70364802 –31.67948303 Method 7 0.04
7 to 8 115.70368206 –31.67946262 115.70368206 –31.67946262 Method 4.0 -
7 to 8 115.70373367 –31.67942712 115.70373367 –31.67942712 Method 4.0 -
7 to 8 115.70399912 –31.67914108 115.70399856 –31.67914060 Method 4.2 0.08
7 to 8 115.70423968 –31.67889549 115.70425271 –31.67888650 Method 4.1 1.59
7 to 8 115.70429723 –31.67885166 115.70428824 –31.67885980 Method 7 1.24
8 to 9 115.70429723 –31.67885166 115.70428824 –31.67885980 Method 7 1.24
8 to 9 115.70456744 –31.67864624 115.70456738 –31.67864663 Method 4.1 0.04
8 to 9 115.70478549 –31.67851310 115.70478602 –31.67851417 Method 4.2 0.13
8 to 9 115.70503749 –31.67838939 115.70504051 –31.67839666 Method 4.2 0.86
8 to 9 115.70530651 –31.67827858 115.70532872 –31.67828468 Method 3.1 2.21
9 to 10 115.70530651 –31.67827858 115.70532872 –31.67828468 Method 3.1 2.21
9 to 10 115.70563116 –31.67901353 115.70564454 –31.67902130 Method 3.2 1.53
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7.2.3 Large-Scaled Road Network Selection

The largest evaluated road network translation processed an area of about 1,600

km2 and included 3,788 MRWA road sections with 23,124 vertices, 2,986 MRWA

intersections and 7,533 Landgate features comprising road sections, connectors

and roundabouts, as indicated in Figure 7.5.

5 km

Figure 7.5: The largest evaluated road network selection with red Landgate road
sections and in dark colour indicated translated MRWA road sections.

The representation of the translated intersections is categorised by the trans-

lated distances and indicated with the colours white, green, orange and red. A

white circle represents no translation, a green circle is used for a translation

larger than 0m and less than 2.0m, an orange circle indicates a translation be-

tween 2.0m and less than 5.0m, and a red circle shows a translation of 5.0m or

more.

The numeral evaluation of the translated road sections and intersections is

given in Table 7.5. The table shows that 23,124 road section features and 2,986 in-
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tersection features were processed by the translation algorithm. Of the processed

features, 162 road section vertices (≈0.7%) and 570 intersection points (≈19.1%)

were not translated. About 64.8% of all road section vertices and 44.6% of all

intersection points were translated with a distance between 0 and 2.0m; approx-

imately 26.2% and 31.8% were translated between 2.00m and 5.00m, and about

8.3% and 4.5% of all features were translated with a distance larger or equal to

5.00m. Translation Method 7 considers untranslated features or features that

were translated by Methods 5 and 6.

Table 7.5: Evaluation of the road network translation in Figure 7.5.

Translation Info Road Sections Intersections
Total features 23,124 2,986
Not translated 162 (see Method 4.0) 570

Translation > 0 and < 2.0m 14,982 1,331
Translation >= 2.0m and < 5.0m 6,070 951

Translation >= 5.0m 2,072 134
Method 1 - 92
Method 2 - 2,229

Method 3.1 306 -
Method 3.2 5,836 -
Method 4.0 162 -
Method 4.1 4,844 -
Method 4.2 1,173 -
Method 5 - 83
Method 6 - 12
Method 7 244 -

Overall, the translation algorithm is capable of being applied on a larger

scale. It can be concluded that the distribution of translation distances is similar

compared to the two previous examples of road network selections.

7.2.4 Section Discussion

The road network translation approach was an investigation into the differences of

the government-provided road network data within Western Australia, especially

considering the comparison of the road centrelines from MRWA and Landgate.

The investigation proceeded to analyse the given datasets so that an overall un-
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derstanding of the datasets could be conducted. The author expected that the

datasets would have common features in the most cases and that the heteroge-

neous road centreline data would overlap at some locations. The road section

evaluation tables of road network selections 1 and 2 often retrieved a road section

vertex translation of approximately 1m or less. The result underlined the initial

expectation that the locations of the road network datasets would be very similar

in the given datasets. The author discovered the fact that some road sections

from MRWA were described with one line string, whereas Landgate had chosen

to represent the same road section with two line strings. The evaluation of the

large road network selection was only possible with a summarised table of the

applied translation methods, as the amount of processed data was too large for

a detailed view. This proved that the translation is capable of being applied

on larger datasets. Furthermore, the evaluation of the translated MRWA inter-

sections is only relevant for MRWA datasets, as Landgate does not provide an

intersection dataset.

7.3 Road Network Conflation

To evaluate the road network conflation approach of this thesis, selected road

network assets will be introduced on a map, and then an ontology reasoning

will be processed with Pellet. The road network conflation approach is based on

Niestroj et al. (2019) and is introduced in this thesis.

7.3.1 Ontology and Semantic Rules Integration

In this section, the road network conflation approach will be evaluated with two

examples to prove the functionality of the designed SWRL rules. The first exam-

ple shows an arbitrarily chosen roundabout intersection with data available from

MRWA, Landgate and OSM that describe the same road asset, as indicated in

Figure 7.6. The intersection contains three MRWA give way signs to regulate the
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driving behaviour, but the MRWA road section dataset contains no information

about the roundabout in place.

Figure 7.6: The roundabout shows Landgate data road sections (RS), connectors
(C) and roundabouts elements with red lines, MRWA road sections with black
lines, an MRWA intersection with a yellow circle, MRWA give way signs (red
triangles) and OSM road asset data with blue lines.

The data conflation evaluation can be conducted with the property assertion

view of Protégé, as shown in Figure 7.7. The object property assertion entries

with a white background are part of the ontology and were created during the data

creation process. The given information includes the three MRWA road sections

that are connected to the intersection, the related point coordinate individuals

that describe the geometrical location of the intersection and the intersection

individual that was created by the process ‘alg:processMrwaIntersections’. The

entries with the yellow background can be used to prove that data conflation

among the different datasets and data sources is available after reasoning the

ontology with Pellet. For example, we can see that two Landgate road sections

are connected to the selected intersection of the property assertion view although

the intersection consists of three road sections. The reason for this is that the

road section to the right of the intersection location is too far to be captured by
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Figure 7.7: Object property assertion view in the software Protégé of the inter-
section that was indicated with a yellow circle in Figure 7.6. The information
with a yellow background was available after reasoning the ontology with Pellet.

the SWRL rule. That behaviour is not wrong, as the intersection is connected

with a roundabout to a road section through connectors. It can also be seen

that three MRWA give way signs, three MRWA road sections and three OSM

road sections are identified as part of the intersection. Another OSM individual

(‘osm:OSM_Residential_46610028’) has been determined at the intersection and

refers to a roundabout circle element. The intersection entity receives a trusted

source score of three, as defined for the MRWA road asset datasets.
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Figure 7.8: Arbitrary road section that shows red Landgate road sections (RS),
MRWA road sections with black lines, MRWA intersections (I) with yellow circles
and OSM road asset data with blue lines.

The second example to evaluate the road network conflation approach is in-

dicated in Figure 7.8 and shows five road sections and two intersections. An

object property assertion view of the Landgate road section ‘RS3’ is shown

in Figure 7.9. By default, the selected individual includes data relations, e.g.

that the road section is connected to four Landgate road sections, that it has

a ‘geosparql:hasGeometry’ relation, that the agent is ‘landgate:Landgate’ and

that the data were taken from the dataset ‘govdata:85d59328-9eb6-4cdf-b2c0-

358a141ccb25’. After the ontology reasoning, the data individual includes con-

flated information retrieved from the MRWA and OSM datasets. For instance,

the selected Landgate individual is on the same road as two MRWA individuals

and one OSM individual, and the road section ‘RS3’ is also connected to two

MRWA intersections. The Landgate road section receives a trusted source score

of two.
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Figure 7.9: Object property assertion view in the software Protégé of the road
section ‘RS3’ that was indicated in Figure 7.8. The information with a yellow
background was available after reasoning the ontology with Pellet.

The two examples in this section show that Semantic Web technologies can

be used to conflate road asset data from different data sources. The conflated

information can be made available after the successful execution of an ontology

reasoning process. The application of semantic rules is not limited for use with

roundabouts and road sections, as seen in the previous examples. Other road

network assets, such as traffic signal sites, road stopping places, pedestrian cross-

ings, bicycle lanes, bridges and tunnels, are outside the scope of this thesis but

could be added in future; rules for the other road assets mentioned do not exist
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yet, as the conflation approach was conducted as a case study. Once appropriate

SWRL rules have been designed, it will be sufficient to reason an ontology once,

as the retrieved results can be saved into the ontology.

7.3.2 Reasoning Time and Efficiency

A disadvantage of ontology processing with Protégé and reasoning with Pellet

is that they require an enormous amount of computing power. The reasoning

time of two road network selections with areas of 0.2 km2 and 1.3 km2 was mea-

sured and evaluated, as indicated in Table 7.6. The smaller road network was

reasoned with a common MacBook Pro computer with 16 GB RAM,3 and the

larger road network was outsourced to a Google Cloud virtual machine with 624

GB RAM. The outsourcing was required, as Pellet reasoning is memory intensive

and reasoning with larger datasets is often aborted with an ‘out of memory’ ex-

ception. Pellet has been criticised as requiring huge amounts of memory (Steller

& Krishnaswamy, 2008).

The smaller road network was reasoned in approximately 29 s, the larger road

network with original coordinates was reasoned in approximately 20:24 min, and

the larger road network with translated coordinates was reasoned in 41:30 min.

Table 7.6: Run-time of road network data reasoned with Pellet.

Dataset / Reasoner Pellet
Road network of 0.2 km2 (original) 29.78 s
Road network of 0.2 km2 (translated) 29.18 s
Road network of 1.3 km2 (original) 1,224.89 s (≈20:24 min)
Road network of 1.3 km2 (translated) 2,490.82 s (≈41:30 min)

Two further Pellet reasoning trials were conducted in relation to a road net-

work selection of approximately 1,279 km,2 as shown in Figure 7.10 with blue

OSM road sections, black MRWA road sections, red Landgate road sections, yel-

low MRWA intersections and red MRWA regulatory signs. The first ontology
3 Protégé reasons an ontology with a single thread, meaning that only one CPU core is

being employed. Thus, the CPU performance of each machine is not relevant enough to be
mentioned.
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reasoning trial was processed with a Google Cloud ‘m1-ultramem-80’ computer

with 80 CPU cores and 1,922 GB of memory. The test included the processing of

the newly designed SWRL rules introduced in Figure 5.2 and was aborted after

22 hours.

5 km

Figure 7.10: Largest road network selection approached with the Pellet reasoner.

The second ontology reasoning trial of the road network selection in Figure

7.10 was conducted with an Amazon AWS ‘x1e.8xlarge’ computer with 32 CPU

cores and 976 GB of memory. The reasoning excluded rules 7–11, introduced

earlier, for the comparison of geographic coordinates to mitigate the comput-

ing power requirements, as with these SWRL rules, each coordinate would be

compared with another. Although the reasoning excluded a huge amount of the

workload, the ontology reasoning crashed with an out-of-memory exception after

about 26 hours. In both cases, the reasoner was able to process the seman-
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tic rules for class hierarchy, object/data property hierarchy, class assertions and

object property assertions but was not able to process through the same individ-

uals’ rules. It has to be mentioned that in a separate test, after deleting all the

SWRL rules that contained the ‘same as’ attribute, the reasoner was still unable

to complete the processing.

7.3.3 Section Discussion

The road network conflation approach tried to conflate road network data that

mean the same thing from MRWA, Landgate and OSM. The author’s expec-

tation was to underline the efficiency of Semantic Web technologies as a first

step towards data harmonisation of Western Australia’s road network data. The

author’s expectations were fulfilled, as by selecting a certain entity in Protégé

after an ontology reasoning process, all road assets with the same meaning were

identified. In addition, it was even possible to determine neighbouring assets,

such as the connected road sections of an intersection and the road signs at an

intersection. At an early stage of this research, the author was motivated to

verify the position of road signs in relation to the guidelines from MRWA about

the location of road assets, as publishedin Niestroj et al. (2018). However, after

sharing the research motivation with MRWA, MRWA clarified that the surveyed

locations of operated road signs were not accurate, as MRWA only keeps track of

where a road sign is placed (e.g. road sign x at intersection y) but not its exact

geographic location. Thus, the investigation to verify the location of road assets

against the official positioning guidelines was not further processed. With regard

to the reasoning time the author assumed that it would be intensive, as the on-

tology reasoner compared each data entry against every other entry. Although

the author outsourced the computing power to high-end cloud computers, the

reasoning process was still not successful on a very large scale.
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7.4 Route Planning

A visualisation of the route planner with the road network selection used for the

evaluation in this thesis is shown in Figure 7.11. The map indicates the layers

‘traffic signals sites’, ‘road edges’, ‘road nodes’, ‘power line edges’, ‘rail crossings’

and ‘road stopping places’ in the initial view after the route planner has been

opened. Stop and give way signs are not loaded in the initial view to prevent an

overfilled map representation.

Figure 7.11: Road network selection used for the evaluation of the route planner.

7.4.1 Inner City Route

The first route evaluated was an inner city route with a length of approximately

3.0 km, as shown in Figure 7.12. The route was processed with Google Maps4 as

a reference and shows a track from the top right of the map to the bottom left of

the map through six different roads, namely Dorset St, Bay View St, Bussel Hwy,

Fairway Dr, Settlers Gate and Frances Louisa St. In comparison, the same route
4 Source: https://www.google.com/maps/dir/-33.653924,115.3241257/-33.6636759,11

5.3132378/@-33.6592249,115.3243101,16z/am=t/data=!3m1!4b1!4m2!4m1!3e0

162

https://www.google.com/maps/dir/-33.653924,115.3241257/-33.6636759,115.3132378/@-33.6592249,115.3243101,16z/am=t/data=!3m1!4b1!4m2!4m1!3e0
https://www.google.com/maps/dir/-33.653924,115.3241257/-33.6636759,115.3132378/@-33.6592249,115.3243101,16z/am=t/data=!3m1!4b1!4m2!4m1!3e0


CHAPTER 7. EVALUATION: ROUTE PLANNING

was planned with the route planner of this thesis considering the shortest route

by distance in Figure 7.13 and considering the shortest route by travel time in

Figure 7.14. At the beginning of the route, both routes showed a different path

compared to the route from Google. The approach of this thesis navigated first

to the west and then to the east, while the path planned by Google navigated

first to the east and then to the west.

Figure 7.12: Route from West Busselton to Mary Elizabeth Ramble planned with
Google Maps.

The route remaining in Figure 7.14 was the same as the Google route, and in

Figure 7.13, the route planner processed a slightly different route in the middle

of the route resulting in a shorter distance. Overall, the resulting distances were

very similar. Google estimated a distance of 3.00 km, and the route planner of

this thesis calculated distances of 2.93 km for the shortest route and 2.96 km

for the fastest route. It has to be noted that Google predicted a travel time of

approximately 5 min, whereas the designed route planner of this thesis calculated

3:19 min and 3:21 min without considering left turns, right turns, traffic signals

or regulatory signs.
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Figure 7.13: Route from West Busselton to Mary Elizabeth Ramble planned with
the route planner of this thesis considering the shortest route by distance.

Another possible best route was identified by the route planner of this thesis

with two activated red traffic signals on the track, as shown in Figure 7.15; the

alternate track was also highlighted by Google as a possible route. The route

took a left turn at a red traffic signal site and followed the track to the west with

a total length of about 3.19 km. The estimated travel time was about 4:17 min

and included a waiting period of 32 s at the red traffic lights.

The route was also processed with cost factors that were taken into account,

as indicated in Table 7.7. Each of the tested configurations resulted in one of the

routes indicated in Figure 7.13, Figure 7.14 and Figure 7.15. Road stopping places

and rail crossings were not considered in this example, as neither constraint was

present within the borders of the start point and the destination. A reversed route

was tested and showed the same reversed results as the original route. Sometimes,

reversed routes will not share the same road sections due to the placement of

regulatory signs, as regulatory signs are evaluated by the route planner in the

driving direction.
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Figure 7.14: Route from West Busselton to Mary Elizabeth Ramble planned with
the route planner of this thesis considering the shortest route by travel time.

Figure 7.15: Route from West Busselton to Mary Elizabeth Ramble planned with
the route planner of this thesis considering the shortest route by distance with
an activated extra red traffic signal cost of 400m.
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Table 7.7: Route evaluation with configurable constraints from West Busselton
to Mary Elizabeth Ramble.

Edge Weight Max. RP Power Lines Left Turns Right Turns Traffic Signals Stop Signs Give Way Signs Figure
Distance 1 - - - - - - 5.14

Travel Time 1 - - - - - - 5.15
Distance 1 500 m - - - - - 5.15

Travel Time 1 40 s - - - - - 5.15
Distance 10 - 25 m - - - - 5.15

Travel Time 10 - 5 s - - - - 5.15
Distance 10 - - 150 m - - - 5.15

Travel Time 10 - - 20 s - - - 5.15
Distance 10 - - - 400 m - - 5.16

Travel Time 10 - - - 32 s - - 5.16
Distance 10 - - - - 25 m - 5.14

Travel Time 10 - - - - 5 s - 5.15
Distance 10 - - - - - 10m 5.14

Travel Time 10 - - - - - 2 s 5.15
Distance 10 500 m 25 m 150 m - 25 m 10m 5.15

Travel Time 10 40 s 5 s 20 s - 5 s 2 s 5.15
Distance 10 500 m 25 m 150 m 400 m 25 m 10m 5.16

Travel Time 10 40 s 5 s 20 s 32 s 5 s 2 s 5.16

7.4.2 Large-Scaled Route

The second route that was evaluated was an approximately 111–129 km drive from

Pericles Street in East Augusta to Quedjinup Drive in Quedjinup. Two reference

routes are indicated in Figure 7.16, with the left route planned by Google Maps5

and the right route planned by Bing Maps.6

The same route was planned with the route planner of this thesis consider-

ing the shortest route by distance in Figure 7.18. As shown, the route planner

identified the shortest route as 105.7 km, which was approximately 6 km shorter

than the shortest reference route. With the approach of this thesis, although the

identified route was shorter compared to the suggested routes from Google and

Bing, the travel time was 1:59 h, about 23–38 min slower. A summary of the

large-scale route is indicated in Table 7.17.

The reason for the longer travel time is related to the MRWA speed limit

dataset, as visualised with black, light brown and red line strings in Figure 7.19.

The black line strings are visible road sections with no available speed limit
5 Source: https://www.google.com/maps/dir/Pericles+St,+East+Augusta+WA+6290/Qu

edjinup+Dr,+Quedjinup+WA+6281/
6 Source: https://www.bing.com/maps?osid=6a40f7a7-546e-4f60-83c7-41e656cdba5e
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Figure 7.16: An indicated route from Pericles Street in East Augusta to Qued-
jinup Drive in Quedjinup planned with Google Maps (left) and Bing Maps (right).

Route
Route Planner Google Maps Bing Maps

Distance Travel Time Distance Travel Time Distance Travel Time
Shortest 105.7 km 1:59 h 113.0 km 1:27 h 111.0 km 1:25 h
Fastest 131.16 km 1:36 h 113.0 km 1:27 h 112.0 km 1:21 h

Figure 7.17: Summary of the route planner evaluation of the large-scale route.

information; the default travel speed was set by the route planner to 50 km/h.

The red line strings are common speed limit values from 10 km/h to 110 km/h in

steps of 10 km/h. The light brown line strings contain the speed limit information

‘50km/h applies in built-up areas or 110 km/h outside built-up areas’, which was

set to a value of 50 km/h as the route planner did not have the data required to

distinguish between built-up areas and outside built-up areas. For this particular

case, the test showed that changing the default value of the light brown line strings

from 50 km/h to 110 km/h changed the travel time from about 1:59 h to about

1:20 h, which was much closer to the results of Google and Bing. The limitation
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Figure 7.18: An indicated route from Pericles Street in East Augusta to Qued-
jinup Drive in Quedjinup planned with the route planner of this thesis considering
the shortest route by distance.

of a lack of accurate information in the speed limit dataset was identified at the

very end of this thesis. In future research activities, additional datasets, such as

building locations, population densities and forest regions, could be considered

for an investigation into the identification of built-up areas based on semantic

rules.

Table 7.8: Route evaluation with configurable constraints from Pericles Street
in East Augusta to Quedjinup Drive in Quedjinup planned with the shortest
distance for the activation of constraints.

Edges
Max.
RP Power Lines Left Turns Right Turns Traffic Signals Stop Signs

Give Way 
Signs

Rail 
Crossings

Road Stopping 
Places Distance Figure

66 1 - 47 - 7 - 12 - 0 - 2 - 3 - 0 - 0 105.70 km 5.18
69 1 500 m 30 - 10 - 10 - 0 - 3 - 6 - 0 - 1 108.76 km 5.20 a
66 1 - 47 25 m 7 - 12 - 0 - 2 - 1 - 0 - 0 105.87 km 5.20 b
66 10 - 47 - 7 150 m 12 - 0 - 2 - 1 - 0 - 0 107.50 km 5.20 c
66 10 - 47 - 7 - 12 400 m 0 - 2 - 3 - 0 - 0 105.70 km 5.18
66 10 - 47 - 7 - 12 - 0 25 m 2 - 3 - 0 - 0 105.70 km 5.18
66 10 - 47 - 7 - 12 - 0 - 2 10 m 3 - 0 - 0 105.70 km 5.18
66 1 - 47 - 7 - 12 - 0 - 2 - 3 500 m 0 - 0 105.70 km 5.18
69 10 500 m 30 25 m 10 150 m 9 400 m 0 25 m 3 10 m 3 500 m 0 - 1 110.36 km 5.20 d
108 1 - 73 - 12 - 15 - 0 - 1 - 2 - 0 20-60 km 3 106.49 km 5.20 e
80 10 500 m 42 25 m 7 150 m 10 400 m 0 25 m 0 10 m 3 500 m 0 20-60 km 1 110.33 km 5.20 f
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5 km

Figure 7.19: The map indicates MRWA road sections without speed limits in
black, road sections with speed limits between 10 km/h and 110 km/h in red,
and speed limits that are either 50 km/h or 110 km/h in light brown.

As the exact speed limit could not be identified with the given datasets, the

route evaluation only considered the shortest route by distance with the activation

of the constraints ‘overhead power lines’, ‘left turns’, ‘right turns’, ‘traffic signal

sites’, ‘stop signs’, ‘give way signs’, ‘rail crossings’ and ‘road stopping places’, as

indicated in Table 7.8.

For the evaluation of the last row of the table, all previously mentioned con-

straints were activated. It can be seen that each constraint column was sub-

divided into a left column and a right column. The left column showed either
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Figure 7.20: Results from the route planner with the configurations as indicated
in Table 7.8. Figures a–e are used to evaluate the configurable constraints, and
Figure f is related to a route with road stopping places.

a value that would be added to an edge weight or a dash sign (‘-’) if not used,

and the right column indicated the number of constraint occurrences. For in-

stance, the second row processed a route planned with an activated power lines

consideration, whereby each crossing overhead power line added 500m to an edge

weight. The results of the planned route are indicated in Figure 7.20 a) and can

be summarised with 69 edges, 30 overhead power lines, 10 left turns, 10 right

turns, zero traffic signals, three stop signs, six give way signs, zero rail crossings

and one road stopping place. The route was only processed once and resulted
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in a distance of about 108.7 km. For the route of Figure 7.20 f) all configurable

edge weight costs and road stopping places in an interval of 20.0–60.0 km were

activated. The results can be summarised as a route with 73 edges, 108 crossing

overhead power lines, one stop sign, two give way signs, 12 left turns, 15 right

turns, zero rail crossings and three road stopping places. The travel distance with

activated road stopping places was about 106.5 km.

7.4.3 Route with Overhead Power Lines

In this section, the evaluation of overhead power lines was conducted with a

processed route from a yellow start node to a green destination node, as indicated

in Figure 7.21. After setting the power lines extra weight to a value of 3,100 m

per crossing overhead power line in a road section, the route planer calculated

the best route between the two nodes as a 15.57-km distance with the occurrence

of four overhead power lines. The evaluation also showed three left turns, one

right turn and one stop sign. Though not visualised here, an independent route

planner configuration with overhead power line extra costs of less than 3,100 m

resulted in a straight route between the two nodes with a distance of 6.38 km,

seven crossing overhead power lines and one stop sign.

It has to be noted that completely avoiding crossing overhead power lines is

often not possible due to their frequent presence across the road network.

7.4.4 Route with Rail Crossings

The avoidance of rail crossings with the route planer was evaluated in this section.

Figure 7.22 and Figure 7.23 show the same road network selection. In Figure 7.22,

the route planning was conducted with no extra costs, which resulted in a route

of 3.52 km between a start and a destination with one rail crossing on the route.

In Figure 7.23, an extra weight of 1,500 m per rail crossing was considered by the

route planner. The result indicated a route with a distance of 4.97 km without a

rail crossing in place; as highlighted in Figure 7.23 and the rail crossing belonged
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Figure 7.21: Route planning evaluation to avoid passing under overhead power
lines.

to a side road that was not part of the route. In conclusion, once again, the route

planner indicated the capability to adopt the constraints of external datasets for

seamless adoption in the route planner.

rail crossing

Figure 7.22: Route planning evaluation with driving over rail crossings.
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rail crossing

Figure 7.23: Route planning evaluation to avoid driving over rail crossings.

7.4.5 Route with Closed Roads

This section evaluated the functionality of considering closed roads with the route

planner, as indicated in Figure 7.24. A closed road dataset was quickly down-

loaded with a click on the button ‘get data’ from the Western Australian data

portal.7 Then, the data was loaded into the route planner, as visualised with

the pink line strings, and a textual summary of the closed roads was loaded into

the panel at the bottom-right of the route planner. Therefore, a start node and

an end node were selected in such a manner that the shortest possible route was

affected by a closed road. As we can see, after the interactive map inspection,

the route planner identified the shortest possible detour to reach the target. If

a target could not be reached, then the route planner showed a message to the

user that a route could not be processed. To conclude the evaluation of closed

roads, the adoption of external datasets that were not available as ontologies was

sucessfully integrated in this section. That supported the aim of data harmoni-

sation in a positive way, as it proved that the data migration of ontologies with

simple datasets is possible.

7 https://data.wa.gov.au
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Figure 7.24: Route planning with a closed road that prevents the route planner
from taking a shorter route to reach the target.

7.4.6 Write and Read a Planned Route

This section evaluated the route planner functionality of writing a route into

a route ontology and reading the route back from the ontology into the route

planner. This part of the research was conducted to analyse the data handling

efficiency of Semantic Web data. The route of the previous section was used,

as seen in Figure 7.24. With the button ‘write TTL’, the route was written in

the RDF format into the route ontology. A screenshot was taken of the first two

route individuals written (see Figure 7.25). The button ‘add routes’ migrated

the read route ontology back into the route planner. After the route selection,

the selected route was successfully displayed on the map, as indicated in Figure

7.26. Then, the route evaluation was processed and summarised with the follow-

ing information: number of overhead power lines, number of edges, travel time,

average travel speed, route distance, and number of regulatory signs, stop signs,

give way signs, left turns, right turns, traffic signals, red traffic signals, green

traffic signals, road stopping places and towns. Below that, we can see that the
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route started in the town Esperance. The description of the town was retrieved on

the fly by the route planner with a SPARQL query from the DBpedia SPARQL

endpoint. With the evaluation of a reading and writing cycle of ontologies for

the road network, the author proved that heterogenous road asset ontologies can

be adopted in common data handling processes. Overall, that enabled seamless

data sharing among various stakeholders, which could be a step towards road

asset data harmonisation for Australia’s road networks.

Figure 7.25: The screenshot was taken from the first two written route individuals
of the route in Figure 7.24.

7.4.7 Section Discussion

An investigation into a route planner driven by Semantic Web technologies was

conducted by the author to integrate the research findings into a real-world appli-

cation. The author’s expectation was to provide a route planner that delivers the

same results as commonly used route planners provided by well-known organisa-

tions, such as Google and Microsoft Bing. A further expectation was that the use

of Semantic Web technologies would activate a simple interface for the integration

of new datasets and constraints. The route planner showed (for planned routes by

distance) good results compared to the routes planned by Google and Microsoft

Bing. Route planning considering the allowed travel speed was not possible to
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Figure 7.26: Route loaded from the ontology after the selection of a saved route
in the top right of the panel.

conduct, as gaps in the MRWA speed limit datasets were identified. It would

be interesting to discover how Google and Microsoft Bing are dealing with the

data gaps. A possible approach could include collecting and evaluating live travel

speed data from users to the update speed limit information in poor datasets. It

is not clear for the author whether a specific data manipulation approach is taken

into account by Google and Microsoft Bing, as such information cannot be located

on the web. At the end of this research, the rail crossings dataset was used in the

route planner as a constraint, as rail crossings can also contain overhead power

lines. The rail crossings were integrated into the developed framework within a

few hours, meaning that a new ontology for rail crossings was created, the rail

crossings GeoJSON dataset was migrated into the rail crossings ontology, and the

route planner was updated appropriately. This showed that the addition of new

constraints into the newly developed route planner framework could be processed

efficiently.
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7.5 Chapter Summary

The road network translation approach was evaluated with three different road

network selections. The first two road networks were used to compare the inter-

active road network data from Landgate and MRWA on a map. The translation

results indicated that it is possible to translate a road asset dataset to the shape

of another dataset so that the overall data projection will share the same shape.

The third road network selection covered an area of about 1,600 km2. The transla-

tion analysis showed that in most cases, the road section vertices and intersection

points were translated with a distance of less than 2m. From a scientific point

of view, the analysis of the Western Australian road network datasets revealed

that the publicly available datasets provided by local governments can be used for

the overall description of road network assets. However, if the research requires

the exact locations of road network assets, then the public road asset datasets

cannot be taken into account, as uncertainties were identified, e.g. road signs and

overhead power lines were allocated on the wrong road side and, in some cases,

a dataset indicated road assets had not been placed.

The evaluation of the road network conflation approach successfully demon-

strated that the use of semantic rules is a possible technology for road asset data

conflation. After the semantic rules, an ontology reasoner can be used to retrieve

reasoned ontology information based on these newly created semantic rules. It

is further possible to save the reasoned information in an ontology, which is very

effective, as a reasoning process can be processing intensive. Overall, the results

were very good, as the data analysis showed a clear connection of the heteroge-

neous datasets. The scientific achievement of processing road asset data harmon-

isation using Semantic Web technologies was fulfilled and could be expanded in

further research.

The route planner was tested with a small and large scaled road network

dataset that was read from an ontology. Several tests to plan a shortest route

showed that the approach of this thesis is comparable to route planners by Google
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and Bing. The advantage of the route planner, is that due the application of

Semantic Web technologies various constraints, e.g. overhead power lines, traffic

signals, regulatory sings, rail crossings and road stopping places, can be taken

into account. Other not-yet-defined constraints can be integrated with minimal

programming effort due to the advantage of Semantic Web technologies.

The route planning was applicable for an inner city route and failed on a long-

range route of about 120 km due to a dataset without a well-defined speed limit.

The route planner was able to find the shortest possible detour for routes that were

affected by overhead power lines, rail crossings and closed roads. Current closed

road data was downloaded on the fly from theWestern Australian data portal, and

town information was retrieved live from DBpedia. From a research perspective

in this thesis, the route planner demonstrated very well that integrating newly

created ontologies into real-world applications can be done seamlessly in a timely

manner.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In conclusion, this thesis dealt with the identification, analysis and utilisation of

suitable Semantic Web technologies for road networks. Literature that consid-

ered ontology-based road asset data, road-related applications and route planning

driven by Semantic Web technologies was reviewed. So-called ITSs are often used

in combination with Semantic Web technologies, which use sensors installed at

road environments (e.g. bridges, traffic signal sites and kilometre points) that

communicate through wireless technologies with transport authorities to improve

road safety. A few ontology-based road network applications that use semantic

rules to reason about various traffic and travel situations, such as public trans-

portation and route planning for vehicles, exist in the literature. Although the

issue of accidents due to contact with heavy vehicles and overhead power lines

is well known, no information was found about a route planner that considers

overhead power lines as a constraint. To conclude with the research objectives,

the next list will address each research objective separately:

• Objective 1: the Semantic Web is based on technologies that can be simpli-

fied and represented in a layer-based stack, such as OWL, RDF-S, SWRL,
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PROV-O and SPARQL. The application of technologies from the Semantic

Web stack enabled the design of the road network and route ontologies.

• Objective 2: a road network data model was conceptualised for each of the

employed datasets ‘road sections’, ‘overhead power lines’, ‘intersections’,

‘regulatory signs’, ‘traffic signal sites’, ‘speed limits’, ‘rail crossings’ and

‘road stopping places’. The retrieved information was then used to design

MRWA, Landgate, Western Power and OSM ontologies with the support of

PROV-O, which enabled us to keep track of a data life cycle.

• Objective 3: the data integration was performed with a Python script that

read the various datasets in the GeoJSON format, processed the infor-

mation for each dataset entry, and wrote the ontology individuals in the

RDF/Turtle format. It was also possible to process either all heterogeneous

MRWA, all Landgate or all OSM dataset selections at once, which was very

efficient.

• Objective 4: a set of SWRL rules was defined to conflate road network asset

data, to assign a trust score for road asset data sources and to find informa-

tion that means the same thing within the data from different data sources.

The rules were successfully evaluated with sample road assets. A disadvan-

tage of the semantic rules reasoning was the limitation of the road network

selection’s size due to the vast computing power requirements. However,

an advantage of the semantic rules reasoning was the efficient integration

and adoption of new datasets from heterogeneous data sources. A sugges-

tion for further research activities includes avoiding Protégé as an ontology

management tools for big data ontologies and processing the ontologies di-

rectly in a custom-designed environment developed with Python, Java or C.

This may enable scaling the amount of processed ontology data, as custom

development commonly allows for full control of data processing.
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• Objective 5: road network selections were processed with a Python script

that applied a designed translation algorithm to MRWA road sections and

intersections so that the overall road centreline representation was har-

monised with a reference dataset. The results were evaluated and showed

that, in most cases, a translation occurred within a distance of less than

2.0m, though translations of more than 5.0m were also present.

• Objective 6: the route planner was able to plan routes with the optional

consideration of overhead power lines, left/right turns, regulatory signs,

traffic signal sites, rail crossings and road stopping places as constraints.

The planned routes delivered similar results compared to the route planners

from Google and Bing considering the shortest distance. Route planning

by the shortest travel time was only possible in a built-up area, as the

speed limit data contained speed limit information that was not directly

processable, e.g. ‘50 km/h or 110 km/h’ for roads outside of built-up areas.

To conclude with the thesis statement, the results above prove that Semantic

Web technologies can be used to bridge the gap of the lack of unified data stan-

dards, tools and data formats of the Australian road and transport authorities.

With ontologies and semantic rules, data with the same meaning can be seam-

lessly identified and processed with external applications, as was shown by the

case study of a route planner. A Semantic-Web-based data conflation approach

could be used as a first step towards data harmonisation. However, it has to be

considered that the application of Semantic Web technologies with big datasets

requires a huge amount of computing power, especially with the consideration

of ontology reasoning. Thus, an implementation to manage the Australian road

network asset data is not suggested, as further research is required to scale the

findings for big data.
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8.2 Future Work

Further research could include an investigation into big data ontology processing,

using these research findings as a solid base. A successful extension for big data

could enable the extension of the road asset ontology processing for the entire

Australian road network. For instance, a cluster-based reasoning approach could

enable the processing of data in data packages instead of the processing of a

dataset immediately. That could result in an effective processing approach, as

irrelevant information of certain areas could be excluded.

This thesis could also be used as a foundation for various research activities

that include road network data and road asset management driven by Seman-

tic Web technologies. That means new road asset datasets outside of Western

Australia could be processed into ontologies with minor changes to the current

metadata definition. For instance, once the whole Australian road network has

been migrated into ontologies, the route planner could be upgraded with much

less effort in order to handle road network graph creation based on multiple data

sources. In the future, other live data, e.g. weather and traffic data, could be

integrated in addition to the currently closed road and DBpedia suburb infor-

mation datasets. Another possible outlook includes the migration of the route

planner into a Protégé plugin so that other researchers can experiment with their

local road network data.
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Appendices

A.1 Software

This section introduces the software that was used in this thesis, including the

ontology editor Protégé, Java IDE IntelliJ IDEA, Python IDE PyCharm, and the

GIS software QGIS.

A.1.1 Protégé

Protégé1 is a popular OWL 2 ontology editor with a user-friendly Graphical User

Interface (GUI) developed by the Standford Center for Biomedical Informatics

Research at the Standford University School of Medicine (Musen, 2015). With

Protégé, it is possible to design and maintain different ontology formats (e.g.

RDF/XML, Turtle, OWL/XML, OWL Functional Syntax, Manchester OWL,

OBO Format, LaTeX and JSON-LD). The program view of Protégé after loading

the program is indicated in Figure A.1. The Protégé ontology editor enables by

default a variety of different features, such as the creation of classes, properties

and individuals with their relations. Protégé version 5.5 was used in this thesis

to design road network ontologies (e.g. OSM, Landgate and MRWA), formulate

SWRL rules (e.g. determine the road node a road sign belongs to or identify if

an intersection is a roundabout) and to reason ontology knowledge.

Protégé has an active community that develops plugins to extend the pro-

gram’s functionality. The plugins used in this thesis include ROWLTab to design
1 http://protege.stanford.edu
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Figure A.1: At program start Protégé loads an empty ontology by default.

the SWRL rules, OWLViz for the ontology graph visualisation and Pellet as the

ontology reasoner.

A.1.2 Programming Environments

The IDEs used int his thesis were IntelliJ IDEA2 and PyCharm3; both were

developed by the company JetBrains s.r.o.:

• The IntelliJ IDEA IDE is a powerful environment for Java programming.

It supports code completion, coding assistance, debugging, version history

and various programming languages (e.g. Java, Java EE, Kotlin, Android,

JavaScript and Scala). The IntelliJ IDE version 2019.1 (Ultimate Edition)

was used in this thesis together with the Java OWL API4 for the devel-
2 http://www.jetbrains.com/idea/
3 http://www.jetbrains.com/pycharm/
4 http://owlcs.github.io/owlapi/

http://www.jetbrains.com/idea/
http://www.jetbrains.com/pycharm/
http://owlcs.github.io/owlapi/


opment of a Semantic Web-based road network planning approach. The

program view of IntelliJ after loading a project is indicated in Figure A.2.

Figure A.2: JetBrains IntelliJ IDEA program view.

• PyCharm is a professional IDE for Python developers. It has similar IDE

features as IntelliJ IDEA (e.g. code completion, coding assistance, de-

bugging and version history) and supports Python-specific tools, such as

Anaconda5 and Jupyter Notebook.6 The PyCharm IDE version 2019.2

(Professional Edition) was used in this thesis for the development of four

different Python scripts for data processing.

The first script, ‘GeoJSON to TTL’, reads GeoJSON data from different

data sources (Landgate, MRWA and OSM) and creates Turtle syntax of

for each individual so that the results can be inserted into the developed

ontologies. Before the processing of the second script, ‘create individuals’,

the onologies (MRWA, OSM and Landgate) must be merged and saved in

JSON-LD format for simpler data handling.
5 GUI-based package manager for Python libraries, URL: http://www.anaconda.com.
6 Web-based application to create shareable source code files with visualisation support (e.g.

graphs, interactive navigation elements and figures), URL: http://www.jupyter.org.

http://www.anaconda.com
http://www.jupyter.org


The second script then extracts all JSON-LD individuals from the merged

ontology and saves them as a JSON-LD data file. The result is used for the

third script, ‘translate road network’, which translates MRWA road network

coordinates to Landgate Shared Location Information Platform data. The

program view of PyCharm after loading a project is indicated in Figure

A.3.

Figure A.3: JetBrains PyCharm program view.

A.1.3 QGIS

The software QGIS7 is an open-source GIS to view, create, edit and export vector

and raster data in different data formats (e.g. GeoJSON, PostGIS, ESRI Shape-

file, GML, GeoTIFF, JPEG, PNG and OGC Web Services) (Sutton et al., 2017).

The QGIS version 3.4.3 (Madeira) software was used in this thesis to load road

assets in different data formats (e.g. ESRI Shapefile, XML and GeoJSON), view

and select road assets, as indicated in Figure A.4, and export data selections into

the GeoJSON format for post-processing.

7 https://qgis.org/

https://qgis.org/


Figure A.4: QGIS program view after loading a project.

A.2 MRWA Provenance Graphs

A.2.1 Provenance Model of MRWA Regulatory Signs

prov:hadPrimarySource

prov:used alg:processMrwaSigns
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prov:generated

prov:generated

prov:wasGeneratedBy



A.2.2 Provenance Model of MRWA Traffic Signal Sites

prov:hadPrimarySource

prov:used alg:processMrwaTraffic-
SignalSites

prov:wasUsedBygovdata:1ab843ac-1b21-4ee8-
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A.2.3 Provenance Model of MRWA Intersections

prov:hadPrimarySource

prov:used alg:processMrwa-
Intersections

prov:wasGeneratedBy
prov:wasUsedBygovdata:1f40e3a3-87a6-4d1b-
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A.2.4 Provenance Model of MRWA Road Stopping Places
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RoadStoppingPlaces
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A.2.5 Provenance Model of MRWA Legal Speed Limits
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prov:used alg:processMrwa-
SpeedLimit
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A.2.6 Provenance Model of MRWA Road Sections
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A.2.7 Provenance Model of MRWA Rail Crossings
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RailCrossings
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A.3 Flowchart Data Creation

A.3.1 Write Landgate Road Asset Individuals Generated

from GeoJSON Datasets

Start

- read input
- get features collection

input: Landgate 
LGATE-012
(GeoJSON)

①

① Is feature in features collection 

- read metadata
read multi-line string, extract line 

string and points, and get asset type

write: road asset and 
multi-line string, line 

string and points

②

② Is next feature in features collection

output: evaluation 
of entries

True

False

True

False

Stop

- process: 
LandgateSlipData

A.3.2 Write OSM Map Line Individuals Generated from

GeoJSON Datasets

Start

- read input
- get features collection

input: OSM 
Map Lines
(GeoJSON)

①
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- read metadata, read line 
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False

True

False

Stop

- process: OsmMapLines



A.3.3 Write MRWA Regulatory Sign Individuals Gener-

ated from GeoJSON Datasets

Start

- read input
- get features collection

input: MRWA 
Regulatory Signs

(GeoJSON)

①

① Is feature in features collection 

- read metadata
read point 

and get sign type
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and point

②

② Is next feature in features collection
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False

True

False

Stop
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A.3.4 Write MRWA Speed Limit Individuals Generated

from GeoJSON Datasets

Start

- read input
- get features collection

input: MRWA 
Speed Limits
(GeoJSON)
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A.3.5 Write MRWA Traffic Signal Site Individuals Gener-

ated from GeoJSON Datasets

Start

- read input
- get features collection

input: MRWA 
Traffic Signal Sites

(GeoJSON)

①

① Is feature in features collection 

- read metadata
- read point
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②
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False

Stop

- process: MrwaTrafficSignalSites

A.3.6 Write MRWA Road Stopping Place Individuals Gen-

erated from GeoJSON Datasets

Start

- read input
- get features collection

input: MRWA 
Road Stopping Places

(GeoJSON)

①
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- process: MrwaRoadStoppingPlaces



A.3.7 Write MRWA Rail Crossing Individuals Generated

from GeoJSON Datasets

Start

- read input
- get features collection

input: MRWA 
Rail Crossings

(GeoJSON)
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- process: MrwaRailCrossings

A.3.8 Write Western Power Overhead Power Line Individ-

uals Generated from GeoJSON Datasets

Start

- read input
- get features collection

input: Western Power
WP-031 (GeoJSON)
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A.3.9 Write Translated MRWA Road Network Individuals

Generated from GeoJSON Datasets

Start

- read input
- get features collection
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(GeoJSON)

②
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A.3.10 Write Translated MRWA Intersection Individuals

Generated from GeoJSON Datasets

Start
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- get features collection
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False
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A.4 Ontology Data Creation

A.4.1 Write MRWA Speed Limit Individuals� �
1 if processMrwaSpeedLimits:
2 file = pygeoj.load("./Input/" + InputFileMrwaSpeedLimits)
3 crs = file . crs
4 crs = '"' + crs[ 'properties ' ][ 'name'] + '"'
5 # source: https://catalogue.data.wa.gov.au/dataset/legal-speed-limits
6 dataset = dataset_MrwaSpeedLimit
7 agent = "MRWA"
8 for entry in file :
9 object_id = entry.properties[ 'OBJECTID']
10 entryName = "SpeedLimit"
11 common_usuage_name = entry.properties['COMMON_USAGE_NAME']
12 geometryCoordinates = None
13 geometryID = None
14 if common_usuage_name is not None:
15 entryName = entryName + "_" + cleanString(common_usuage_name)
16 if object_id is not None:
17 entryName = entryName + "_" + str(object_id)
18 objectName = prefixMrwa + entryName
19 if entry.geometry.coordinates is not None:
20 geometryCoordinates = str(entry.geometry.coordinates)
21 GeoJSONcoordinates = {}
22 GeoJSONcoordinates['coordinates'] = (entry.geometry.coordinates)
23 GeoJSONcoordinates['type'] = (entry.geometry.type)
24 entryLineString = wkt.dumps(GeoJSONcoordinates, decimals=8)
25 thisLineString = prefixMrwa + entryLineString
26 if geometryCoordinates is not None and not (lineCoordinateDict.get(

thisLineString)):
27 geometryID = functions.writeLineString(prefix=prefixMrwa, lineString=

entryLineString, crs=crs, Ontology=Ontology, generatedBy=
processMrwaSpeedLimitLabel, primarySource=objectName)

28 lineCoordinateDict[thisLineString ] = objectName
29 if not (speedlimitDictMrwa.get(entryName)):
30 functions .writeEntityContent(prefix=prefixMrwa, entry=entryName, metadata

=entry.properties, geometryID=geometryID, Ontology=Ontology, agent=
agent, dataset=dataset, generatedBy=processMrwaSpeedLimitLabel,
thisClass="mrwa:SpeedLimit")

31 speedlimitDictMrwa[entryName] = objectName� �



A.4.2 Write MRWA Traffic Signal Site Individuals� �
1 if processMrwaTrafficSignals:
2 file = pygeoj.load("./Input/" + InputFileMrwaTrafficSignalSites)
3 crs = file . crs
4 crs = '"' + crs[ 'properties ' ][ 'name'] + '"'
5 # source: https://catalogue.data.wa.gov.au/dataset/traffic-signal-sites
6 dataset = dataset_MRWA_Traffic_Signal_Sites
7 agent = "MRWA"
8 for entry in file :
9 object_id = entry.properties[ 'OBJECTID']
10 entryName = "TrafficSignalSite"
11 node_name = entry.properties['NODE_NAME']
12 node_description = entry.properties['NODE_DESCR']
13 geometryCoordinates = None
14 if node_description is not None:
15 entryName = entryName + "_" + cleanString(node_description)
16 if object_id is not None:
17 entryName = entryName + "_" + str(object_id)
18 objectName = prefixMrwa + entryName
19 if entry.geometry.coordinates is not None:
20 geometryCoordinates = str(entry.geometry.coordinates)
21 GeoJSONcoordinates = {}
22 GeoJSONcoordinates['coordinates'] = (entry.geometry.coordinates)
23 GeoJSONcoordinates['type'] = (entry.geometry.type)
24 entryPoint = wkt.dumps(GeoJSONcoordinates, decimals=8)
25 thisPoint = prefixMrwa + entryPoint
26 longitude = "{:.{}f}".format(entry.geometry.coordinates[0], decimalPoints)
27 latitude = "{:.{}f}".format(entry.geometry.coordinates[1], decimalPoints)
28 pointCoordinatesLabel = "PointCoordinates"
29 thisPointCoordinates = pointCoordinatesLabel + "_" + str(longitude) + "_" +

str(latitude)
30 pointCoordinates = prefixMrwa + thisPointCoordinates
31 geometryID = thisPointCoordinates
32 if geometryCoordinates is not None and not (pointCoordinatesDictMrwa.get(

pointCoordinates)):
33 writePoint(prefix=prefixMrwa, longitude=longitude, latitude=latitude, entity=

pointCoordinates, generatedBy=processMrwaTrafficSignalSitesLabel,
primarySource=objectName)

34 pointCoordinatesDictMrwa[pointCoordinates] = objectName
35 if not (trafficsignalsDictMrwa.get(entryName)):
36 functions .writeEntityContent(prefix=prefixMrwa, entry=entryName, metadata

=entry.properties, geometryID=geometryID, Ontology=Ontology, agent=
agent, dataset=dataset, generatedBy=processMrwaTrafficSignalSitesLabel,
thisClass="mrwa:TrafficSignalSite")

37 trafficsignalsDictMrwa[entryName] = objectName� �



A.4.3 Write MRWA Road Stopping Place Individuals� �
1 if processMrwaRoadStoppingPlaces:
2 file = pygeoj.load("./Input/" + InputFileMrwaRoadStoppingPlaces)
3 crs = '"' + file . crs [ 'properties ' ][ 'name'] + '"'
4 # source: https://catalogue.data.wa.gov.au/dataset/road-stopping-places
5 dataset = dataset_MRWA_Road_Stopping_Places
6 agent = "MRWA"
7 for entry in file :
8 object_id = entry.properties[ 'OBJECTID']
9 entryName = "RoadStoppingPlace"
10 commonUsageName = entry.properties['COMMON_USAGE_NAME']
11 commonUsageNameClean = ""
12 geometryCoordinates = None
13 if commonUsageName is not None:
14 entryName = entryName + "_" + cleanString(commonUsageName)
15 if object_id is not None:
16 entryName = entryName + "_" + str(object_id)
17 objectName = prefixMrwa + entryName
18 if entry.geometry.coordinates is not None:
19 geometryCoordinates = str(entry.geometry.coordinates)
20 GeoJSONcoordinates = {}
21 GeoJSONcoordinates['coordinates'] = (entry.geometry.coordinates)
22 GeoJSONcoordinates['type'] = (entry.geometry.type)
23 entryPoint = wkt.dumps(GeoJSONcoordinates, decimals=8)
24 thisPoint = prefixMrwa + entryPoint
25 longitude = "{:.{}f}".format(entry.geometry.coordinates[0], decimalPoints)
26 latitude = "{:.{}f}".format(entry.geometry.coordinates[1], decimalPoints)
27 pointCoordinatesLabel = "PointCoordinates"
28 thisPointCoordinates = pointCoordinatesLabel + "_" + str(longitude) + "_" +

str(latitude)
29 pointCoordinates = prefixMrwa + thisPointCoordinates
30 geometryID = thisPointCoordinates
31 if geometryCoordinates is not None and not (pointCoordinatesDictMrwa.get(

pointCoordinates)):
32 writePoint(prefix=prefixMrwa, longitude=longitude, latitude=latitude, entity=

pointCoordinates, generatedBy=processMrwaRoadStoppingPlacesLabel,
primarySource=objectName)

33 pointCoordinatesDictMrwa[pointCoordinates] = objectName
34 if not (roadstoppingplacesDictMrwa.get(entryName)):
35 functions .writeEntityContent(prefix=prefixMrwa, entry=entryName, metadata

=entry.properties, geometryID=geometryID, Ontology=Ontology, agent=
agent, dataset=dataset, generatedBy=
processMrwaRoadStoppingPlacesLabel, thisClass="mrwa:
RoadStoppingPlace")

36 roadstoppingplacesDictMrwa[entryName] = objectName� �



A.4.4 Write Western Power Overhead Power Line Individ-
uals� �

1 def processWPOverheadPowerlines():
2 file = pygeoj.load("./Input/" + inputFileWPOverheadPowerlines)
3 crs = '"' + file . crs [ 'properties ' ][ 'name'] + '"'
4 # source: https://catalogue.data.wa.gov.au/dataset/road-network
5 dataset = dataset_WP_Overhead_Powerlines_031
6 agent = "WP"
7 for entry in file :
8 pick_id = entry.properties[ 'pick_id']
9 kv = entry.properties[ 'kv' ]
10 entryName = "OverheadPowerline_031"
11 if kv is not None:
12 entryName = entryName + "_" + kv
13 if pick_id is not None:
14 entryName = entryName + "_" + pick_id
15 objectName = prefixWP + entryName
16 geometryCoordinates = None
17 if entry.geometry.coordinates is not None:
18 geometryCoordinates = str(entry.geometry.coordinates)
19 GeoJSONcoordinates = {}
20 GeoJSONcoordinates['coordinates'] = (entry.geometry.coordinates)
21 GeoJSONcoordinates['type'] = (entry.geometry.type)
22 entryMultiLineString = wkt.dumps(GeoJSONcoordinates, decimals=8)
23 thisMultiLineString = prefixWP + entryMultiLineString
24 geometryID = None
25 if geometryCoordinates is not None and not (multiLineDictWp.get(

thisMultiLineString)):
26 geometryID = functions.writeMultiLineString(prefix=prefixWP,

multiLineString=entryMultiLineString, crs=crs, Ontology=Ontology,
generatedBy=processWPOverheadPowerlinesLabel, primarySource=
objectName)

27 multiLineDictWp[thisMultiLineString] = objectName
28 if not (overhead_Powerlines_031_Dict.get(entryName)) and geometryID:
29 functions .writeEntityContent(prefix=prefixWP, entry=entryName, metadata=

entry.properties, geometryID=geometryID, Ontology=Ontology, agent=
agent, dataset=dataset, generatedBy=processWPOverheadPowerlinesLabel,
thisClass="wp:WP031")

30 Ontology.write(prefixWP + entryName + '␣' + prefixWP +'
hasMultiLineCoordinates␣' + prefixWP + geometryID + '.\n')

31 overhead_Powerlines_031_Dict[entryName] = objectName
32 writeDatasetAndProcess("wp:", 'WP', processWPOverheadPowerlinesLabel,

dataset_WP_Overhead_Powerlines_031, Ontology)



33 writeAgent("WP", "wp:", "Western␣Power", Ontology)� �
A.4.5 Write Agent Individual� �

1 def writeAgent(name, prefix, label , Ontology):
2 Ontology.write(prefix + name + '␣a␣prov:Organization;\n')
3 Ontology.write('rdfs : label ' + '␣"' + label + '"' + '.\n')� �
A.4.6 Write Dataset and Process Individuals� �

1 def writeDataSetAndProcess(prefix, agent, process, dataset, Ontology):
2 # write agent was accosiate for process
3 Ontology.write(prefix + agent + '␣prov:wasAssociateFor␣alg:' + process + '.\n')
4 # write the dataset provenance
5 Ontology.write(dataset + '␣a␣prov:Entity;\n')
6 Ontology.write('␣prov:wasUsedBy␣alg:' + process + '.\n')
7 # write the process provenance
8 Ontology.write('alg : ' + process + '␣a␣prov:Activity;\n')
9 Ontology.write('␣prov:wasAssociatedWith␣' + prefix + agent + ';\n')
10 Ontology.write('␣prov:used␣' + dataset + '.\n')
11 Ontology.write(prefix + agent + '␣a␣prov:Agent.\n')� �

A.4.7 Write Other Tags� �
1 def writeOtherTags(values):
2 dictValues = dict(item.split("=>") for item in values.split(","))
3 for key, value in dictValues.items():
4 key = key.replace("'", "")
5 value = value.replace("'", "")
6 Ontology.write(';\n' + prefixOsm + key + '␣"' + str(value) + '"')� �
A.4.8 Write Translation Method� �

1 def writeTranslationMethod(method, label):
2 Ontology.write(prefixAlg + method + '␣a␣prov:Activity;\n')
3 Ontology.write('␣' + 'rdfs : label␣"' + label + '".\n')� �



A.5 Translation Methods

A.5.1 Method 1 and Method 2

1 Function translateMrwaIntersectionToLgSlipData(DataSet):
2 Result ←− set to DataSet
3 foreach Road in DataSet do
4 foreach Individual1 in Road do
5 if Individual1 is Landgate RoadSection or Connector then
6 MultiLineString ←− get multi-line string of RoadSection
7 LineString ←− get line string of MultiLineString
8 Points ←− get points of LineString
9 foreach Point1 in Points do

10 foreach Individual in Road do
11 if Individual2 is MRWA Intersection then
12 Point2 ←− get point of Individual2
13 if Point2 within 6.00m offset to Point1 then
14 Point2 ←− update with Point1 coordinates
15 if Individual1 is Landgate RoadSection

then
16 Result[Road][Individual1] ←− set

Point2 and translation method 1
17 else
18 Result[Road][Individual1] ←− set

Point2 and translation method 2

19 return Result

20 End Function



A.5.2 Method 3

1 Function prepareMrwaRoadNodes(DataSet):
2 Result ←− set to DataSet
3 Intersections ←− get MRWA intersections from DataSet with

translated coordinates
4 foreach Road in DataSet do
5 foreach Individual in Road do
6 if Individual is MRWA RoadSection then
7 LineString ←− get line string of Individual
8 Points ←− get points of LineString
9 if Individual is not left or right carriageway then

10 foreach Point1 in Points do
11 foreach Intersection in Intersections do
12 Point2 ←− get point of Intersection
13 Translation ←− get translation methos of

Intersection
14 if offset between Point1 and Point2 within

6.00m then
15 Point1 ←− update with Point2 coordinates
16 LineString ←− update with Point1

coordinates
17 if Translation is method 1 then
18 Result[Road][Individual] ←− set

LineString and translation method 3.1
19 else
20 Result[Road][Individual] ←− set

LineString and translation method 3.2
21 end
22 end
23 end
24 end
25 end
26 end
27 end
28 end
29 return Result

30 End Function



A.5.3 Method 4

1 Function translateMrwaRoadNetwork(DataSet):
2 Result ←− set to DataSet
3 foreach Road in DataSet do
4 foreach Individual in Road do
5 if Individual is MRWA RoadSection and not left/right

carriage way then
6 LineString ←− get line string of Individual
7 Points ←− get points of LineString
8 foreach Point in Points do
9 if Point is not translated then

10 PointNearest ←− get nearest Landgate point
11 if PointNearest is less than 25.00m offset then
12 PointOne ←− nearest Landgate point
13 PointTwo ←− nearest Landgate point (must be

different object as object from PointNearest)
14 Line ←− between PointNearest and PointOne
15 PointTranslated ←− nearest point to Line
16 if PointTranslated equals PointNearest then
17 Translation ←− set translation method 4.1
18 else
19 Translation ←− set translation method 4.2
20 end
21 if PointTwo and PointOne at same Road and

PointNearest and PointTwo are within
25.00m offset to Point and Point is within
polygon of PointNearest and PointTwo then

22 PointTranslated ←− set to Point
23 Translation ←− set translation method 4.0
24 end
25 LineString ←− update with PointTranslated

and add Translation
26 end
27 end
28 Result[Road][Individual] ←− update LineString
29 end
30 end
31 end
32 end
33 return Result

34 End Function



A.5.4 Method 5

1 Function
translateIntersectionToNearestTranslatedMrwaRoadSection(DataSet,
TranslatedRoadSections):

2 Result ←− set to DataSet
3 foreach Intersection in DataSet[MRWA][Intersections] do
4 Point ←− get point of Intersection
5 ConnectedRoadSections ←− get road sections connected to

Intersection
6 Carriageway ←− get road sections with left or right carriageway

of ConnectedRoadSections
7 if Carriageway count is 2 and all road sections are at the same

road then
8 PointTranslated ←− create point of Carriageway mean

values Translation ←− set translation method 6.2
9 end

10 if PointTranslated is not set then
11 foreach RoadSection in TranslatedRoadSections do
12 PointTranslated ←− determine nearest translated MRWA

road section point
13 Translation ←− set translation method 6.1
14 end
15 end
16 if PointTranslated is set and not equal to Point then
17 Result[MRWA][Intersections][Intersection] ←− update

Point with PointTranslated and add Translation
18 end
19 end
20 return Result

21 End Function



A.5.5 Method 6

1 Function
translateIntersectionToCentreOfSlipLinestring(DataSet):

2 Result ←− set to DataSet
3 foreach Intersection in DataSet[MRWA][Intersections] do
4 Point ←− get point of Intersection
5 if Point is not translated then
6 RoadSections ←− get Landgate road sections in 16.00m offset
7 RoadSectionGroup ←− group RoadSections by road
8 if RoadSectionGroup has road sections grouped in 3+2 or

5+1+1 then
9 MiddleElement ←− get the road section in the middle of

RoadSectionGroup (e.g. road section 2 of 3 or 3 of 5)
10 LineString ←− get line string of MiddleElement
11 if MiddleElement is set then
12 PointTranslated ←− get mean point of LineString
13 Translation ←− set translation method 7
14 Result[MRWA][Intersections][Intersection] ←−

update Point with PointTranslated and add
Translation

15 end
16 end
17 end
18 end
19 return Result

20 End Function



A.5.6 Method 7

1 Function
translateMrwaRoadNodeToTranslatedMrwaIntersection(DataSet):

2 Result ←− set to DataSet
3 foreach Intersection in DataSet[MRWA][Intersections] do
4 CurrentTranslation ←− get translation method of Intersection
5 if CurrentTranslation is translation method 6.1, 6.2 or 7 or

intersection is not translated then
6 Point ←− get point of Intersection
7 ConnectedRoadSections ←− get MRWA road sections

connected to Intersection
8 foreach RoadSection in ConnectedRoadSections do
9 LineString ←− get line string of RoadSection

10 FirstPoint ←− get first point of LineString
11 LastPoint ←− get last point of LineString
12 if FirstPoint and Point are in 6.20m offset then
13 PointTranslated ←− set to FirstPoint
14 Translation ←− set translaton method 8
15 else if LastPoint and Point are in 6.20m offset then
16 PointTranslated ←− set to LastPoint
17 Translation ←− set translaton method 8
18 if Translation is set then
19 Result[MRWA][Intersections][Intersection] ←−

update Point with PointTranslated and add
Translation

20 end
21 end
22 end
23 end
24 return Result

25 End Function
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