On Simulation and Optimization of Freeway Network Operations

B. Wiwatanapataphee, Yong Hong Wu Curtin University of Technology

Progress from last PSG meeting

- Optimization of freeway traffic flow via VSL control
- Microscopic simulation with VSL and RM

 Control of congestion under normal and incident conditions through Ramp Metering via optimization and data analysis

Road Map (from Farrington Road to Narrows Bridge)

The Road Network Structure

Road segments	From	То	Length	#Lane	VDS	CELL No.	Remark
1	Start	H622	382.72	3	0091, 0090	0	
2	H622	12	230.55	4	0200	1	
3	12	H618	276.55	4	0190		
4	H618	14	172.35	4		2	Farrington
5	14	15	398.24	3		2	
6	15	H617	467.39	3	0089	3	
7	H617	17	206.48	5		4	
8	17	18	146.66	4	0180	7	South Street
9	18	H559	590.47	4	0700	5	
10	H559	H558	587.38	3	0170	6	
11	H558	111	230.15	4	0702	7	
12	111	H554	211.56	3	0160	· · ·	Leach Hwy &
13	H554	113	146.91	4	0088		Cranfrod
14	113	H553	190.46	3	0150	8	
15	H553	115	226.08	4			
16	115	116	49.51	3	0087		
17	116	117	681.02	3	0140	9-13	
18	117	118	1437.04	3	0086		

Road segments	From	То	Length	#Lane	VDS	CELL No.	Remark
19	118	H551	395.63	3		14	
20	H551	H547	417.96	3	0130		
21	H547	121	123.64	4		15	Manning / Canning Bridge
22	121	122	128.30	3	0085		
23	122	123	162.52	3			
24	123	124	125.5	4			
25	124	H549	112.63	3	0084	16	
26	H549	126	137.79	4			
27	126	127	79.78	4	0120		
28	127	128	3165.58	3	0003;0083; 0100;0082	17-22	
29	128	129	273.65	3		23	
30	129	H500	245.59	4	0081		
31	H500	131	128.76	4		24	
32	131	H503	219.17	4	0002		
33	H503	133	243.22	5	0080	25	
34	133	END	408.85	5			

Computational Domain

VDS DATA

Measured Data - Speed

Measured Data – Flow rate

Measured Data – Density

CNN – LSTM Predicted Data (every 12 minutes)

Estimated Incoming flow

Estimated Off-ramp outgoing flow

LP Control of congestion through **RM**

Aim: To obtain optimal on-ramp flows while minimizing flow disruptions on the mainline and preventing spillback from affecting the surrounding arterial roads.

 $\max \sum_{i=1}^{N_R} \alpha_j r_{j,t}$

subject to,

• $\sum_{i=2}^{N_R+1} \beta_{i,j} \gamma_{j,t} \leq \min\{0; \gamma_i C_i - \Delta Q_{i,t-1} - \beta_{1,j} Q_{1,t}\}$

• $0 \leq r_{j,t} \leq d_{j,t} + \frac{1}{T}m_{j,t}$, $m_{j,t} = m_{j,t-1} + T(d_{j,t-1} - r_{j,t-1})$ $0 \leq m_{j,t} \leq m_{max}$ and $\alpha_j = \frac{1}{N_S} \sum_{k=0}^{N_S - 1} L_{j,k}$ $r_{j,t}$: decision variables representing inflow to freeway from on-ramp *j* at time *t*

 α_i : mean trip length (km)

 $\beta_{i,j}(t)$: ratio of traffic volume on each section *i* with the inflow from each ramp *j*

 C_i : flow capacity of section i

 $\gamma_i \in (0, 1]$ service level of section *i*

 m_j : queue length of ramp j

 $d_i(t)$: estimated on-ramp demand

 $q_0(t)$: estimated traffic volume from Roe Hwy

Ratio of traffic on each section *i* with the inflow from each source *j*

$$\beta_{i,j}(t) = \sum_{k=0}^{N_S} w_{i,k} \frac{X_{j,k}(t)}{d_j(t)},$$

where $X_{j,k}(t)$ are calculated by the linear constrained <u>optimization</u> problem

$$\min \sum_{k=1}^{N_S+1} \sum_{j=1}^{N_R+1} C_{j,k} X_{j,k}(t) X_{jk}(t) \ge 0$$

subject to

$$\sum_{k=1}^{N_S+1} X_{j,k}(t) = d_j(t), \qquad j = 1, \dots, N_R + 1$$
$$\sum_{j=1}^{N_R+1} X_{j,k}(t) = s_k(t), \qquad k = 0, \dots, N_S + 1$$

Service level $\gamma = 1.0$

Ramp Metering 6 - 9 AM

Emergency control phase

Aim: To dissolve congestion quickly to avoid capacity reductions and flow breakdown due to incidents.

Using Variable Message Signs (VMS).

- **Upstream on-ramps are closed** successively in accordance with the severity of the congestion.
- Off-line analyses and simulations are used to determine when and where sequential control should be used, including which ramps should be restricted or closed.

RM Control (cells 1-11)

ACKNOWLEDGEMENTS

The project is funded by the Australian Research Council, Main Roads WA, and Roads and Maritime Services NSW.

Acknowledgement is made to the Australian Research Council, Main Roads WA, Roads and Maritime Services NSW, and the Australia's Sustainable Built Environment National Research Centre (SBEnrc) for their support.

THANK YOU

For Your Attention

