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A B S T R A C T

In this paper, an enhanced Empirical Wavelet Transform (EWT) approach based on Synchroextracting Transform
(SET) is proposed for time-varying system identification. When a structure of time-varying physical properties,
i.e. mass, stiffness or damping, is under external excitations, structural dynamic responses are usually non-
stationary because the system has time-varying dynamic vibration characteristics. Under this circumstance, it
would be difficult to determine the number of Intrinsic Mode Functions (IMFs) included in structural dynamic
responses by using Fourier spectrum. Considering that the filtering boundaries of traditional EWT method are
defined based on the segmental Fourier Spectrum of a processed signal, directly using it for non-stationary signal
decomposition may not be effective and accurate. To apply the EWT method for time-varying system identifi-
cation, in this study, time-frequency analysis based on SET is first performed to determine the frequency
components of a non-stationary vibration signal instead of using Fourier spectrum. The filtering boundaries for
EWT analysis are determined based on the time-frequency representation. Then, the IMFs are extracted from the
non-stationary vibration signals by using EWT with the above defined filtering boundaries. When the IMFs are
accurately obtained, the instantaneous frequencies of IMFs are identified by using Hilbert Transform (HT). In
numerical simulations, a simulated signal with a high level noise is analyzed to verify the feasibility of using SET
to define the filtering boundaries. Then the proposed approach is used to identify the instantaneous frequencies
of a time-varying two-storey shear type building under earthquake and Gaussian white noise excitations, re-
spectively. Experimental investigations on a time-varying bridge-vehicle system are conducted to verify the
effectiveness of the proposed approach. The results in both numerical simulations and experimental validations
demonstrate that the enhanced EWT approach can effectively and reliably identify the instantaneous frequencies
of time-varying systems.

1. Introduction

Dynamic behaviors of engineering structures often change over time
due to the environmental condition changes, mass and stiffness changes
due to the material loss or strength degradation, and the effects of ex-
treme loads, etc. These time-varying system effects can be widely ob-
served in many engineering fields, i.e. civil and mechanical en-
gineering. For example, the friction mechanisms used in industry can
introduce the changes in the stiffness and damping of a structure under
normal operations. Civil structures may also exhibit time varying vi-
bration characteristics under earthquake, tornados and hurricanes,
because of the nonlinearities in the structures, and the changes in the
stiffness and boundary conditions [1]. Therefore, identifying the vi-
bration characteristics of time-variant structures is vital for researchers

and engineers to understand and assess the operational conditions of
structures.

Over the past decades, system identification of time-variant struc-
tures based on the measured vibration responses (i.e. acceleration,
displacement responses) has obtained a broad attention. Various tech-
niques have been developed and reported in the literatures [2,3].
Generally, these methods could be classified into two categories: (1)
time-varying system identification based on adaptive algorithms [4–6];
(2) Time-varying system identification by using time-frequency analysis
techniques [7–9]. For example, Wang et al. [3] used a least-squares (LS)
parameter estimation method with slide-window function to track the
real-time frequency of a high-voltage switch structure under the cyclic
loading excitations in the laboratory. Yang et al. [6] proposed a novel
LS parameter estimation approach to adaptively track the system
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parameters of a time-variant structure. In addition, in the literature
[10], an improved LS strategy is developed to identify the hysteretic
parameters of a nonlinear system under arbitrary external excitations.

In recent years, time-frequency analysis techniques have been
widely conducted for system identification of time-variant structures,
i.e. by using Hilbert Transform (HT) [11,12] and Wavelet Transform
(WT) [13–15]. Shi et al. [16] applied Empirical Mode Decomposition
(EMD) with HT for the modal parameter identification of a time-
varying multi-degree-of-freedom (MDOF) system. Bao et al. [2] devel-
oped an improved Hilbert-Huang Transform (HHT) method for time-
varying system identification by using the autocorrelation functions of
structural dynamic responses as the input to HHT, and therefore re-
duced the noise effect and improved the accuracy of identification.
Wang et al. [17] proposed a recursive HT system identification ap-
proach, which have been successfully used to track the real-time
structural characteristics of linear shear-type buildings under the forced
vibration. WT is an alternative time-frequency analysis approach,
which has been widely used for the system identification of linear and
non-linear structures. Hou et al. [18] developed a novel approach for
instantaneous modal identification of a time-varying structure sub-
jected to an earthquake excitation based on continuous wavelet trans-
form (CWT). Wang et al. [7] used the extracted wavelet ridges to ef-
fectively identify the instantaneous frequency (IF) of a cable structure
with different tension forces under the stochastic excitations.

More recently, a new time-frequency analysis technique, named
Synchrosqueezing Transform (SST), has been developed by Daubechies
et al. [19], and has been applied for IF identification [20,21]. The main
advantage of SST is that it squeezes the time-frequency coefficients into
the IF trajectory, which can be approximated to an ideal tine-frequency
analysis representation. However, SST has a lower time-frequency re-
solution when it is used to reconstruct the interested components of a
non-stationary signal. Based on the theory of SST, a novel time-fre-
quency analysis method, namely Synchroextracting Transform (SET),
have been developed by Yu et al. [22], which can generate a more
energy-concentrated analysis result than using SST.

In this study, time-frequency representation based on SET is em-
ployed to detect the filtering boundaries of the Empirical Wavelet
Transform (EWT) process [23] for non-stationary signal analysis. In the
past studies, several modified EWT methods have been successfully
applied for operational modal identification [24,25]. However, to the
authors’ best knowledge, there has been no study yet on using or im-
proving EWT method for IF identification of time-varying structures.
With the vibration responses measured from a time-varying structure,
time-frequency analysis based on SET is first performed to determine
the filtering boundaries of EWT instead of using the ordinary Fourier
Spectrum. Then EWT is applied to extract the individual modes from
the vibration response signals. Each mode is an amplitude-modulation
and frequency-modulation signal with a narrow-band property with a
varying IF. The IF of each time-variant component can be identified by
using HT. A synthetic signal which consists of two time-varying fre-
quency components is first used to verify the feasibility and accuracy of
the proposed approach. Then the proposed method is employed to
identify the IF of a two-storey shear-type building under the forced
vibration. Experimental studies on a real bridge under the heavy traffic
loads are conducted to further validate the effectiveness of the proposed
method.

The remainder of this paper is organized as follows. Section 2 briefly
explains the principle of EWT and SET, and provides a fundamental
process of time-varying system identification based on the proposed
approach. In Section 3, numerical studies on a synthetic signal and a
two-storey time-varying structure are conducted to investigate the ac-
curacy and effectiveness of the proposed approach. In Section 4, Ex-
perimental verifications on a highway bridge under the traffic loads are
performed to identify the instantaneous frequencies. Section 5 provides
the discussions and conclusions on the obtained results.

2. Theoretical background and development

2.1. Empirical Wavelet Transform (EWT)

Using the traditional EWT method for vibration signal decomposi-
tion consists of two main steps: (1) Segmenting the Fourier spectrum of
the target vibration signal; (2) Constructing the filtering bank, and
processing each segmental part of the signal. To determine the filtering
banks of the EWT method, the local peaks of the Fourier spectrum are
firstly identified. The lowest local minima between the two sequential
peaks are detected, which are defined as the boundaries of each fil-
tering bank.

Assuming that the Fourier spectrum of a vibration signal is divided
into N segments, the boundaries of all segments can be denoted as

=n N( 0, 1, , )n , and the filtering boundaries of each segment can be
defined by an interval = [ , ]n n n1 (where = 00 and =N ). It is
noted that ==U [0, ]n

N
n1 . A transient phase with a width of 2 n is de-

fined for each n, and n can be written as
= ×n n (1)
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In the literature [23], the basic function used for the EWT analysis is
Meyer wavelet, and the corresponding scaling function and the em-
pirical wavelets are expressed as
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where x( ) denotes the auxiliary function of the Meyer wavelet, which
can be defined as [23]
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When the scaling function and empirical wavelets mentioned in Eqs.
(3) and (4) are derived, the EWT analysis is conducted and the detail
coefficients can be expressed as

= =W n t x t d F X( , ) ( ) ( ) ( ( ) ( ))x n n
1

(6)

The approximation coefficients can be obtained by

= =W t x t d F X(0, ) ( ) ( ) ( ( ) ( ))x n n
1

(7)

Then, the modes extracted from the vibration signal are described as

=f t W t t( ) (0, ) ( )x0 1 (8)

=f t W k t t( ) ( , ) ( )k x k (9)

and the reconstruction signal can be obtained as
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2.2. The improved EWT approach

As mentioned in a previous study [24], it is a significant challenge
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to use the traditional Fourier Spectrum for determining the filtering
boundaries associated with EWT analysis when a signal is contaminated
by significant noise and non-stationary components. Therefore, an im-
proved time-frequency analysis approach is worth of investigations to
identify and track the real-time frequency components of the non-sta-
tionary signals. With an improved energy-concentration of the time-
frequency representation, in this study, SET is employed to enhance the
process for filtering boundary detection when the EWT method is
conducted for non-stationary signal decomposition.

2.2.1. Synchroextracting Transform (SET)
A multicomponent vibration signalx t( ), which consists of N non-

stationary frequency components, is presented as

= =
= =

x t x t A t e( ) ( ) ( )
i

N

i
i

N

i
j t dt

1 1

( )i

(11)

in which A t( )i and t( )i represent the amplitude and frequency in-
formation of the ith time-varying component, respectively. The dif-
ferent modes can be well separated based on a sufficient distance, i.e.,

>+ t t j m( ) ( ) 2 , {1, , 1}i i1 (12)

where denotes the frequency support of the window function. The
Short Time Fourier Transform (STFT) representation G t( , )e of the
vibration signal x t( ) can be derived by using the first-order approx-
imation form [22,26,27]

=
G t A t g t e( , ) ( ) ( ( ))e
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in which g( ) denotes the Fast Fourier transform.
Then, the IF of the vibration signal is derived using

= =
=

t t j G t
G t
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e
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To generate an energy-concentrated time-frequency representation,
the Fourier-based SST is proposed by Oberlin et al. [27], which can be
expressed as

=Ts t G t t( , ) ( , ) ( ( ))e i1 (15)

When SST is performed based on the original STFT coefficients of a
multi-component vibration signal, the discrete coefficients will be
squeezed into the IF trajectory t( )i from the original results ofG t( , )e .
Based on the post-processing procedure of SST, a sharper energy-con-
centrated time-frequency representation can be realized than the ori-
ginal STFT results [27]. However, when the target signals are con-
taminated with measurement noise, the noise will also affect the time-
frequency analysis results by SST, which may lead to a poor noise ro-
bustness. To overcome this problem, Yu et al. [22] proposed to retain
only the time-frequency information of the STFT results which are
significantly related to the time-variant characteristics of a vibration
signal. In this case, SET is expressed as

=Te t G t t( , ) ( , ) ( ( ))e i2 (16)

where t( ( ))i2 can be further expressed as

= =t t
else

( ( )) 1, ( )
0,i

i
2

(17)

Based on Eq. (17), it can be observed that the term t( ( ))i2
extracts the time-frequency coefficients of G t( , )e in the IF trajectories,
and the residual coefficients are removed. By using SET method, a more
energy-concentrated representation can be obtained than using SST.
Therefore the time-frequency resolution is highly enhanced. In addi-
tion, since using SET only retains the STFT coefficients which have the
maximum values, the effect of measurement noise can be significantly
decreased.

2.2.2. Time-varying system identification based on the improved EWT
For an n degree-of-freedom (DOF) time-variant system, the equation

of motion is given as

+ + =u u ut t t t t t tM C K f( ) ¨ ( ) ( ) ( ) ( ) ( ) ( ) (18)

in which tM( ), tK( ), and tC( ) denote the time-variant mass, stiffness and
damping matrices, respectively; u (t), u (t)andü (t) are displacement,
velocity and acceleration response vectors of the time-variant system;

tf( ) is the external excitation force vector.
For Eq. (18), it can be further transformed into modal spatial co-

ordinates [1], which can be expressed as

+ + = =
M
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0 (19)

where =M Mi i
T

i denotes the ith modal mass, i is the ith mode
shape vector. The natural frequency of the ith modal response is re-
presented by i0 . When zero-mean Gaussian white noise is assumed as
the input of the system, the IF of the ith modal response can be written
as
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where H[ ] denotes HT, and the second term in Eq. (20) is about a fast
time-varying function with the mean value equals to zero. The in-
stantaneous natural frequencies of the time-varying system during the
vibration are extracted from the identified frequencies by filtering out
the fast varying component.

The measured dynamic response of the l-th DOF u t( )l of the time-
varying system can be described as a function of modal responses

=
=

u t q( )l i

n
li i1 (21)

where li is the l-th coefficient of the i-th mode shape vector. The de-
composed ith modal responseu t( )l

i( ) of the measured vibration signal
from the l-th DOF can be represented as

=u t q( )l
i

li i
( ) (22)

The obtained mono-component signalu t( )l
i( ) can be written as an

analytical signalZ t( )l
i( )

= + =Z t q H q A e( ) [ ]l
i

li i li i li i
j t dt( ) ( )i (23)

From Eq. (23), it suggests that the identified IF of the i-th decom-
posed dynamic response equals to the IF of the i-th modal response. In
this study, an improved EWT process with HT is applied for time-var-
iant system identification, and the proposed strategy is shown in Fig. 1.

3. Numerical studies

3.1. A simulation signal

In this section, a simulated signaly t( ), as defined in Eq. (24), is used
to investigate the effectiveness of using SET to determine the bound-
aries for EWT analysis. It consists of two time-variant frequency
componentsy t( )1 andy t( )2 which are described in Eqs. (25) and (26),
respectively.

= + +y t y t y t noise t( ) ( ) ( ) ( )1 2 (24)

= +y t t t( ) 2sin(14 4 arctan((2 2) ))1
2 (25)

= +y t t t( ) 2sin(48 20 sin )2 (26)

To further validate the feasibility of using SET to improve the per-
formance of EWT, a high-level noise, that is, 20% Gaussian white noise,
is added to the simulated signal. The sampling duration is set as 5 s with
a sampling rate of 120 Hz. Figs. 2 and 3 show the vibration signal and
the corresponding Fourier Spectrum, respectively. It can be observed
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from Fig. 3 that the two frequency components are not obvious and
therefore properly defining the filtering boundaries for EWT analysis
may not be straightforward. Under this circumstance, the time-fre-
quency analysis based on the SET is used to track and determine the
varying frequency components of the target signal. To verify the ef-
fectiveness of using SET, the classical time-frequency analysis tech-
nique, namely WT, is also performed to identify the instantaneous
frequencies of the signal. The time-frequency analysis results obtained
from WT and SET are described in Fig. 4(a) and (b), respectively. From
Fig. 4, it can be observed that the non-stationary signal consists of two
time-varying components. To decompose these two mono-components
from the target signal by using EWT, a constant filtering boundary
should be determined between these two components. By comparing
the results in Fig. 4(a) and (b), it can be observed that with a more
energy-concentrated time-frequency representation realized by using
SET, it is distinguishable to determine the clear constant filtering
bounds between two mono-components. In Fig. 4(a), the frequency of
the dashed line is calculated based on the maximum frequency of the
first frequency component and the lowest value of the second frequency

component. This dash line is used to show that the filtering boundary
may not be well selected, due to the insufficient time-frequency analysis
resolution by using WT. In real signal decomposition, the constant fil-
tering boundary is usually determined by using

= +t t[ ( )] [ ( )]
2c

max min
1 2

(27)

in which t[ ( )]max
1 is the maximum frequency value of the first mono-

component, and t[ ( )]min
2 represents the minimum frequency value of

the second component.
For WT analysis, the wavelet ridges of two time-varying components

are usually firstly identified, and then the filtering boundary can be
determined accordingly. Based on Eq. (27), the location of the selected
constant filtering boundary by using SET is accurately shown in

Fig. 1. The flowchart of time-variant system identification using the improved EWT.

Fig. 2. The simulated signal with 20% noise.
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Fig. 3. Fourier Spectrum of the simulated signal.
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Fig. 4(b). Once the filtering boundaries are exactly determined, the
Fourier Spectrum of the non-stationary signal can be segmented for
EWT, and used to construct the filtering bank. Then, the individual
modes can be effectively decomposed, and the obtained two time-
varying IMFs are shown in Figs. 5(a) and 6(a), respectively. To further
verify the effectiveness of the proposed approach, Variational Mode
Decomposition (VMD) [28] is also performed to identify the time-
varying components of the signal, and the decomposed two IMFs are
shown in Figs. 5(b) and 6(b), respectively. By comparing the identified
results in Figs. 5 and 6, it is clearly observed that the improved EWT is
more reliable and accurate to identify the time-varying components of
the signal. In addition, Fig. 7(a) and (b) display the Fourier spectrum of
the extracted IMFs using two methods, respectively, it can be observed
that the non-stationary simulated signal can be accurately decomposed
by using the improved EWT approach, even under a significant noise
effect.

3.2. A two-storey time-varying shear building

In the section, a two-storey shear building model with the varying
structural stiffness, as displayed in Fig. 8, is constructed to validate the
feasibility of using the improved EWT process for time-varying system
identification. The time-varying structure has two masses of
m1 = 2.50 × 105 kg at the first floor, and m2 = 1.70 × 105 kg at the top
floor. Two damping coefficients c1 = 9.6 × 102 kN s/m and
c2 = 3.2 × 102 kN s/m are assumed for these two stories. To simulate

the time-variant dynamic characteristics of the structure model, two
time-variant stiffness coefficients k1 and k2 are employed to define the
lateral stiffness of the building model. The stiffness coefficients of k1 is
set to be periodically reduced from ×2.10 10 kN·m5 to

×1.404 10 kN·m5 in a time duration between 4 and 16 s, that is,
= ×k t t{2.1 0.058( 4) 0.131sin[0.5 ( 4)]} 101

5 kN m. The initial
stiffness coefficient ofk2 is set as 1.05 × 105 kN m, and then, linearly
degraded from ×1.05 10 kN·m5 to ×0.7 10 kN·m5 between 4 s and 8 s.

3.2.1. Instantaneous frequency identification
In order to investigate the accuracy and reliability of the improved

EWT approach for time-varying system identification, the following two
excitations are considered in the numerical case studies.

Case 1: The 1940 El Centro ground acceleration record is employed
as the input of the structure, which is shown in Fig. 9(a);
Case 2: A Gaussian white noise series with a standard deviation of
0.1 g (g equals to 9.81 m/s2) is selected as the external excitation of
the structure, as displayed in Fig. 9(b).

For the above mentioned two cases, the structural dynamic re-
sponses of the first floor are recorded with a sampling rate of 50 Hz. The
recorded displacement responses for the two cases are shown in
Fig. 10(a) and (b). Since the non-stationary characteristics of the
structural dynamic responses are unknown in prior, SET is first

(a) (b)      
Fig. 4. Time-frequency representation of the simulated signal using: (a) WT; (b) SET.

(a)

(b)

0 0.5 1 1.5 2 2.5 3
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Fig. 5. The decomposed first mono-component using: (a) Improved EWT; (b)
VMD.
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Fig. 6. The decomposed second mono-component using: (a) Improved EWT; (b)
VMD.
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performed to determine the filtering boundaries for EWT analysis. The
SET results of these two cases are depicted in Fig. 11 (a) and (b), re-
spectively. As can be seen from Fig. 11, the time-frequency analysis
results based on SET method are obviously more fluctuant than those in
Section 3.1. The phenomenon is significantly caused from the rapidly
varying frequency component contained in structural dynamic re-
sponses when the building structure is forced by zero-mean earthquake
and Gaussian white noise excitations. However, it can be clearly ob-
served from Fig. 11 that the fluctuations of the two varying frequency

components are respectively located in two separated frequency ranges,
which are from 1.4 Hz to 3.0 Hz and 4.5 Hz to 6.8 Hz, respectively. It is
noted that SET is mainly used to define the filtering boundaries, and the
results clearly indicate that the time-frequency representation based on
SET is more reliable for defining the filtering boundaries of EWT ana-
lysis. In addition, to verify the effectiveness and improvement of the
time-frequency representation based on SET, the analysis result shown
in Fig. 11(a) is further compared with those from the other three ad-
vanced time-frequency analysis tools, i.e. S-Transform, Wavelet trans-
form and SST methods. The results are shown in Fig. 12. It is observed
that the time-frequency representation based on SET is more reliable for
defining the filtering boundary with a higher resolution. Therefore,
based on the time-frequency representations shown in Fig. 11(a) and
(b), the filtering boundaries for the analysis of EWT can be well defined
as three constant frequencies, i.e., 0.8 Hz, 3.5 Hz and 7.5 Hz, respec-
tively. Once the filtering boundaries are defined, the two time-varying
frequency components of structural displacement responses can be ex-
actly separated by the EWT approach. The identified instantaneous
frequencies of the two cases by using HT are presented in Fig. 13(a) and
(b). Significant fluctuations are observed by comparing the results from

(a)

(b)
Fig. 7. Fourier spectrum of the two decomposed IMFs using: (a) Improved EWT;
(b) VMD.

Fig. 8. The two-storey shear building model.

(a)

(b)

Fig. 9. External excitations in two numerical cases: (a) El Centro earthquake;
(b) Gaussian white noise.

(a)

(b)
Fig. 10. Displacement responses of the first floor: (a) under earthquake ex-
citation; (b) under Gaussian white noise excitation.
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(a)

(b)
Fig. 11. The detected filtering boundaries based on SET: (a) under earthquake
excitation; (b) under Gaussian white noise excitation.

(a) (b)

(c)
Fig. 12. Time-frequency representation of structural dynamic responses under earthquake excitations: (a) Wavelet Transform; (b) S-Transform; (c) SST;

(a)

(b)
Fig. 13. The identified frequencies of the time-variant structure: (a) Case 1; (b)
Case 2.
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HT with the exact values. By filtering out the rapidly varying compo-
nent of the identified instantaneous frequencies using a low-pass filter
with a cutoff frequency, the average value of these instantaneous fre-
quencies can reliably denote the natural frequency of the structure
under the external excitations.

3.2.2. Effects of measurement noise
To further investigate the performance and reliability of the pro-

posed approach, 5% and 10% noises are added to the structural dy-
namic responses obtained in Case 1 and Case 2. The same procedure as
above is followed to analyze the data. The extracted average frequency
components from the two decomposed modes under the effects of the
different noise levels are depicted in Fig. 14(a) and (b). It can be ob-
served that the identified instantaneous frequencies are close to the
exact values even if under the effects of high-level noise. To further
quantify the accuracy of the identified instantaneous frequencies under
the effects of measurement noise, an error index EI is defined as a root-
mean-squared value over the total time duration T of structural dy-
namic responses,

=EI
IF t IF t dt

IF t dt

[ ( ) ( )]

[ ( )]

T
a e

T
e

0
2

0
2

(28)

in which IF t( )a and IF t( )e represent the average and exact instantaneous
frequencies, respectively.

Based on Eq. (28), the calculated EI values of the identified in-
stantaneous frequencies under the effects of measurement noise are
listed in Table 1. In addition, the identified results without the effects of

measurement noises are also calculated in Table 1. As can be seen from
Table 1, the EI values are 9.04% and 5.13%, respectively, under the El
Centro earthquake excitation without measurement noise. Similarity,
the values are respectively 7.53% and 5.35% under Gaussian white
noise excitation. By comparing the calculated EI values under various
cases, it can be found that the increased noise levels have a slight in-
fluence on the identification accuracy.

It is noticed from Fig. 14(a) and (b) that the identification errors are
located at the beginning and/or end of the time series due to the large
frequency oscillations. The phenomena is caused by the end effects
associated with HT for a finite-length frequency modulated signal, it
could not be eliminated completely since the instantaneous frequencies
vary with time and the target signal is non-stationary for time-varying
systems [12]. Satisfactory results based on the proposed approach are
obtained accurately even under significant measurement noise effect.

4. Experimental investigations

4.1. A highway bridge

To further validate the performance of using the improved EWT
process for structural time-varying dynamic characteristic identifica-
tion, experimental studies on an operational highway bridge are con-
ducted. The target bridge consists of three spans, which is shown in
Fig. 15. The beams are 17.10 m long in the 1st and 3rd spans, and the
central-span beam is 16.96 m long with two half joints at the ends. The
half joints shown in Fig. 15(b) have been strengthened by using ex-
ternal vertical steel strengthening rods as well as the horizontal
strengthening rods on the two sides of the joint. This half-joint ar-
rangement is different from the typical arrangement as there is no
bearing between the suspended and supporting nibs while the joints are
post-tensioned by an internal tendon crossing the joint. On the abut-
ments and piers, the girders are tied by cast-in-situ infill panels, which
are supported by two 4-column piers. The dynamic responses of the
operational bridge system under the traffic loads are recorded by a
structural health monitoring (SHM) system installed in 2014. Structural
responses, including strain, displacement and acceleration responses, at
various locations of the bridge system are measured. The acceleration
data of the bridge under the traffic loads are recorded with two tri-axial
accelerometers (S1, S2) at the mid-span of the bridge. The locations of
the acceleration sensors are shown in Fig. 16. A camera is installed to
capture the traffic vehicles on the bridge when the SHM system is ac-
tivated, with a frame rate of 1 Hz. The health monitoring system can be
trigged to record the dynamic responses data of the bridge subjected to
the traffic when the strain response in any of the strain rings reaches a
pre-defined threshold (equals to µ120 ). A two minutes window with
60 s pre-triggering and 60 s afterwards is applied to record the dynamic
responses of an event with a sampling rate of 130 Hz. Since only two
accelerometers are installed at the mid-span of the bridge system to
record structural vibration signals, the natural frequencies of the bridge
system under the different traffic loading and environmental conditions
can be identified, however the mode shape could not be obtained in this
case.

(a)

(b)
Fig. 14. The identified instantaneous frequencies under different noise levels:
(a) under earthquake excitation; (b) under Gaussian white noise excitation.

Table 1
The calculated results of EI index.

Case 1 Case 2

Mode 1 Mode 2 Mode 1 Mode 2

Without noise 9.04% 5.13% 7.53% 5.35%
5% noise 9.27% 5.49% 7.71% 6.54%
10% noise 9.45% 6.08% 7.94% 6.83%
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4.2. Time-varying instantaneous frequency identification

In this section, operational modal identification of the bridge system
under the weak external excitation is conducted, and then the in-
stantaneous frequencies identification of the bridge under heavy traffic
loads is further discussed and investigated by using the proposed ap-
proach. Based on the images captured by the installed camera, a light
weight traffic excitation case is selected for the first case. In this event,
the traffic and the measured acceleration response from the accel-
erometer S1 are presented in Fig. 17(a) and (b). It can be seen from the
measured vibration signal that the maximum response amplitude of the
measured acceleration signal is approximately equal to 0.007 g, which
can be considered as a relatively small dynamic response measured
from the highway bridge. Due to the light weight traffic and the mass of
those vehicles is negligible as compared to that of the bridge, the
measured acceleration signal is used for the modal identification of the
operational bridge system to understand the vibration characteristics of
the bridge. However, since the global mode shapes of the structure
cannot be obtained by only using the responses at two locations from
two accelerometers, a finite element model, as shown in Fig. 18, de-
veloped based on the design drawings is employed to approximately
represent the bridge. The analytical natural frequencies and the corre-
sponding mode shapes obtained from the finite element model are de-
scribed in Fig. 19(a)–(d), respectively. By cross checking the fre-
quencies and mode shapes, four main frequencies of the measured
vibration signal are identified by performing the fast Fourier Transform

(a) (b)

Half Joint 

Fig. 15. An operational highway bridge: (a) Bird view of the bridge; (b) The reinforced half joints.

(a) 

(b) 

S1 S2

Fig. 16. Locations of the installed accelerometers; (a) Elevation view; (b) Cross section of the mid-span.

(a)

(b)
Fig. 17. (a) The light weight traffic excitation; (b) the measured acceleration
from sensor S1.
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as 5.78 Hz, 7.88 Hz, 12.20 Hz and 18.87 Hz, respectively, as shown in
Fig. 20. To ensure the reliability of the identified modes, the phase
information of each mode extracted from the vibration signals recorded
by two accelerometers are compared in Fig. 21(a)–(d), respectively. It
can be seen from Fig. 20 that the two vibration signals have similar
phase information at the first and the third modes, however, the op-
posite phase is clearly observed at the second and the fourth modes.
Compared with the mode shapes from the finite element model, it can
be concluded that the first and third modes correspond to the bending
modes of the bridge structure. However, the second and fourth modes
are the torsional modes of the bridge. For bridges under traffic loads,
higher modes are normally considered to have relatively lower con-
tributions to the responses than the lower modes [29], however, it is
observed that the third mode of the bridge at 12.20 Hz has the highest
energy in the Fourier Spectrum. The potential reason can be described
as: with the roughness and damaged surface on the pavement of the
deck, for example, as shown in Fig. 22, the highway bridge is usually
forced by the bouncing motion of the moving traffic loads [30–32],
which may excite the high frequency components of the bridge.

The natural frequencies of the bridge are verified by performing the
finite element analysis. The instantaneous frequencies of the bridge
system under the heavy traffic loads are identified by using the pro-
posed approach. The measured acceleration response under two heavy
tank trucks is used to identify the time-varying instantaneous fre-
quencies of the structure. The traffic from the selected event and the
corresponding vibration signal recorded from the accelerometer S1 are
shown in Fig. 23(a) and (b), respectively. Since the mass ratio between
two heavy tank trucks and the bridge is more significant than the first
case, the bridge is considered as a time-varying system when the ve-
hicles are crossing the bridge. The maximum recorded acceleration
signal on the bridge is equal to 0.048 g, indicating a significant vibra-
tion. In order to identify the varying modes of the acceleration signal,
the time-frequency analysis based on SET is first performed to de-
termine the frequency boundaries of the modes. The time-frequency

analysis results from SET are shown in Fig. 24(a) and (b), and it is
clearly observed that the filtering boundaries of EWT can be de-
termined. To extract two bending modes from the non-stationary ac-
celeration signal, the filtering boundaries of 4.8 Hz, 6.8 Hz, 9.5 Hz and
14.2 Hz are selected for EWT. It can be noted from Fig. 24(a) that the
time resolution of the first two time-variant modes is low, and the main
reason is the time series used in this study is too short, which would
cause a low time resolution due to the requirement of frequency re-
solution. Once the two bending modes are accurately extracted from the
non-stationary acceleration signal via EWT, the instantaneous fre-
quencies of two modes can be identified and shown in Fig. 25(a) and
(b), respectively. It can be observed from Fig. 25 that these two iden-
tified instantaneous frequencies by using HT method have a slow
fluctuation trend when the two heavy trucks are crossing the bridge. By
filtering out the rapidly varying component of the identified in-
stantaneous frequencies using a low-pass filter with a cutoff frequency
of 0.1 Hz, the average instantaneous frequencies are extracted and
shown in Fig. 25. As observed from Fig. 25(a), the IF of the first bending
mode is gradually changing from 5.96 Hz to 4.88 Hz, and coming back
to 5.64 Hz at the end of the event. This demonstrates that the bridge
under heavy trucks in this case is time-varying, due to the significant
mass ratio between the two heavy trucks and the bridge [31,32], as well
as the varying excitation locations. Due to the heavy mass of the ve-
hicle, the total mass of the bridge-vehicle system increases and there-
fore the identified natural frequency decreases. As observed from

Fig. 18. The bridge model.

Fig. 19. Modal information extracted from the FE model: (a) Mode 1 (f1 = 5.82 Hz); (b) Mode 2 (f2 = 7.85 Hz); (c) Mode 3 (f3 = 12.85 Hz); (d) Mode 4
(f4 = 16.77 Hz).

Fig. 20. Fourier spectrum of the measured vibration signal.
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Fig. 21. The phase information of each mode between two measured acceleration signals: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4.

Fig. 22. The damaged surface of the bridge deck.

(a)

(b)
Fig. 23. (a) The traffic loads on the bridge; (b) the corresponding measured acceleration from S1.
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Fig. 25(b), the IF of the second bending mode of the measured accel-
eration signal shows a similar variation pattern as the first bending
mode. The maximum change rate of the IF is approximately equal to
19.5%, which indicates that the heavy traffic loads have a significant
effect on the modal parameters of the highway bridge. Generally, it can
be concluded that the proposed approach can well separate the two
main time-varying modes from a non-stationary vibration signal, as
well as track the IF of a time-varying bridge-vehicle system.

5. Conclusions

This paper proposes an enhanced EWT approach based on SET for
the time varying system identification. The time-frequency analysis of a
vibration signal is performed by using SET to determine the filtering
boundaries of EWT analysis instead of using Fourier Spectrum. An en-
hanced EWT method is developed to separate the vibration signal into
several IMFs based on the predefined filtering boundaries. When IMFs
of a vibration signal are obtained, HT can be conducted to identify and

extract IF of each mode. The slowly varying part of the identified in-
stantaneous frequencies by HT is approximately equal to the in-
stantaneous frequencies of a time-varying system under the external
excitations. Based on the results of both numerical simulations and
experimental validations, the corresponding conclusions can be con-
cluded as following:

(1) The improved EWT approach with SET can be used to accurately
decompose a non-stationary signal into several modes based on the
predefined filtering boundaries from SET;

(2) The proposed approach is effective and accurate for time-varying
system identification to obtain the instantaneous frequencies of
structures, even under the significant noise effect.
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