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A B S T R A C T

This paper proposes an improved decentralized structural identification approach with output-only measure-
ments. The improved approach can be used for system identification of both linear and nonlinear structures. A
large-scale structure is divided into a number of smaller zones according to its finite element configuration. Each
zone is dynamically tested in sequence with its own set of sensor placement. The external excitation forces in
each zone are identified using the Kalman filter technique. Structural parameters of the whole structure are
divided into several subsets and then updated by using the Newton-SOR method. Both the external excitations
and structural parameters are iteratively updated until a defined convergence criterion is met. The proposed
technique is then applied to two numerical examples: a six floor building and a planar truss structure. The
nonlinear system parameters of the building are correctly identified. The unknown excitation force, damage
location, and damage severity in the plane truss structure are successfully identified. The effect of measurement
noise on the identified results is also studied. An eight floor shear type structure is finally tested in the la-
boratory. The experimental results further verify the effectiveness and efficiency of the proposed technique in
damage identification using output-only measurements.

1. Introduction

Numerous efforts have been made to develop structural identifica-
tion methods with unknown input to satisfy the general practical ap-
plication requirement in field because the input excitation is difficult to
be measured under operational conditions of civil structures. When
only the output structural responses are available, the corresponding
methodologies are usually referred to as output only techniques. Most
techniques of this kind identify both the structural parameters and
excitation forces simultaneously or successively via an iterative
manner. Li and Chen [1] proposed a statistical algorithm to identify the
structural parameters and the input information sequentially. Lu and
Law [2] proposed a two-stage method based on the dynamic response
sensitivity to identify both the structural parameters and excitation
forces. Other methods based on Quadratic Sum-Squares Error [3], Se-
quential nonlinear least-square estimation [4], Extended Kalman Filter
[5], etc. have also been reported to conduct the damage identification
with unknown input.

Many structural identification techniques are based on the as-
sumption that the structure behaves linearly [6–8]. However, structural
failures or damage generally cause nonlinearity to some extent, and

therefore damage detection for structures with nonlinear behavior
should be considered. Kalman filter technique is one of the most pro-
mising methods for nonlinear structural identification. Lei et al. [6]
proposed a Kalman filter technique for the identification of nonlinear
restoring force with limited input and output measurements. The al-
gorithm sequentially applied the classical Kalman estimator for esti-
mating the structural responses and the recursive least squares esti-
mation for identifying the nonlinear restoring force and unmeasured
excitations. Wu and Smyth [7] proposed a damage detection method
based on unscented Kalman filter to identify the hysteretic differential
models with degradation and pinching. Xie and Feng [8] proposed an
iterative unscented Kalman filter for nonlinear structural identification.

The conventional system identification and damage detection
methods at the structural element level may be well suitable for small to
medium-size structures, but not necessarily suitable for large-scale
structures with a large number of structural parameters because a large
amount of data is required. In addition, the system identification is
generally an inverse problem, which needs a number of iterations and is
computationally intensive. The capital cost for sensor installation,
practical problems associated with power supply, and the data pro-
cessing capability of hardware are several typical adverse factors for a
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high density sensor configuration. Therefore efficient damage detection
and model updating with less numbers of sensors is of emerging in-
terest.

Substructural analysis and identification approaches have been
proved to be effective and efficient for large scale structures. Weng
et al. [9] proposed an inverse substructure-based finite element model
updating technique in the frequency domain. The modal data measured
on the global structure are disassembled to substructural flexibility
matrices, under the force and displacement compatibility constraints.
The substructural eigenparameters can be used to identify local da-
mages, which are more sensitive than the global eigenparameters [10].
Several researchers have developed substructure-based system identi-
fication techniques in the time domain. Koh et al. [11] proposed a
“divide-and-conquer” damage detection method and the substructural
parameters were identified using a genetic algorithm. Yuen and Kata-
fygiotis [12] proposed a substructural identification method based on
Bayesian inference. The method calculated the probability distribution
of the parameters for identification. Not only the best estimates of the
parameters but also their uncertainties can be qualified. Law et al. [13]
performed structural damage detection from coupling forces between
substructures. Lei et al. [14] proposed a substructural identification
method based on the extended Kalman filter. The large-scale structure
is divided into several small substructures, and the interface effect from
adjacent substructures is treated as unknown input forces. The interface
forces of each substructure are identified using the extended Kalman
estimator and least-squares estimation.

Time domain substructural identification methods usually have two
limitations: (1) the measurements of the interface forces should be
available; and (2) the number of sensors should be equal to or larger
than the number of interface forces. Several methods have been de-
veloped to deal with the first limitation. Koh et al. [15] eliminated the
requirement of interface forces using different sets of measurements of
the substructure under the same dynamic excitation and thus the in-
terface measurement was not necessary. Li and Law [16] proposed a
wavelet based transmissibility matrix for substructural damage identi-
fication, where the dynamic responses at one set of degrees-of-freedom
(DOFs) of the target substructure were reconstructed from another set
of measurement responses. The local damages were identified from
minimizing the differences between the measured and the re-
constructed sets of responses. Consequently the interface measurements
are not required. However, this method is still subject to the second
limitation, that is, it requires the number of sensors to be equal to or
larger than the number of interface forces [17].

The decentralized method is an alternative solution to the large-
scale system identification, which shares the similar idea “divide-and-
conquer” of the above-mentioned substructural approaches.
Decentralized methods have a significant advantage when used for the
full scale model updating. It could conquer the abovementioned two
limitations that the substructural methods may suffer from, to have a
good estimation of the pseudo-inverse in the identification by for-
mulating the global optimization as a set of smaller size optimization
problems. Decentralized methods have been used for modal identifi-
cation. Sim et al. [18] proposed a decentralized modal analysis using a
decentralized topology in smart wireless sensor networks. The proposed
approach consisted of two main steps: the first is the local feature ex-
traction using Eigensystem Realization Algorithm (ERA) or Natural
Excitation Technique (NExT) and the other is the global modal property
determination using the aggregated local properties in the base station.
Another decentralized modal identification method was proposed by Jo
et al. [19]. This method was embedded into Imote2 wireless sensor
platforms for wireless structural health monitoring. The efficiency of
the decentralized modal identification using high-sensitivity sensors
was experimentally verified using a steel truss structure. Decentralized
methods were also proposed for structural damage identification. Wu
et al. [20] proposed a parametric damage detection method based on
neural networks. Yun et al. [21] proposed a decentralized damage

identification method based on wavelet signal analysis tools. The dis-
crete wavelet coefficients of acceleration were used for damage iden-
tification with wavelet entropy indices.

This paper proposes an improved decentralized structural identifi-
cation technique for both linear and nonlinear structures, by extending
the authors' pervious work [22] on damage identification of linear
structures only. The significant improvement to further develop the
decentralized approach for nonlinear structural identification in this
study. The proposed approach combines the Kalman filter technique for
force identification and the Newton-SOR method for damage identifi-
cation. It owns the advantages of both the decentralized method and
Kalman filter technique, and could be used for both linear and non-
linear structural identification. The basic formulations of the improved
decentralized structural identification approach are described in Sec-
tion 2. In Section 3, numerical simulations and identification results
obtained from a nonlinear system and a planar truss structure are
presented and discussed. Experimental studies on an eight-floor
building structure are presented in Section 4, followed by the con-
cluding remarks in Section 5.

2. Theoretical development

Extended and unscented Kalman filter based methods are promising
for nonlinear system identification and have been intensively studied
[5–8]. In the extended Kalman filter technique, both unknown struc-
tural parameters and forces are included in the state vector and a large
number of unknowns may cause the state space equation unstable.
Therefore, the method is only applicable to the system identification of
small-scale structures with several unknown parameters. In the present
study, the Kalman filter technique is used for the state estimation only
and the unknown input forces are identified from the state vector with
the optimization method. Since the unknown structural parameters are
not included in the state vector, the dimension of the state vector is not
large and the force identification can then be achieved even for large
scale structures. A sensitivity based method, i.e. Netwon-SOR method,
is adopted for the decentralized structural damage identification. The
Tikhonov regularization is employed to solve the ill-posed inverse
problem and obtain a stable solution.

2.1. Equation of motion of a linear or nonlinear system

The equation of motion of a structure under the external excitation
can be written as

+ + =Mx F x F x θ Bft t t t,¨ ( ) ( ̇ ( )) ( ( ) ) ( )c s (1)

where M is the ×n n mass matrix, = ⋯x t x t x t x t( ) [ ( ), ( ), , ( )]n1 2
T is the

displacement vector, F x t( ̇ ( ))c , F x θt( ̇ ( ), )s and f t( ) are the dissipating
force vector, the stiffness force vector and the excitation force vector,
respectively; B is the mapping matrix relating with the location of the
applied forces, and = ⋯θ α α α[ , , , ]ne1 2

T is the unknown parameter vector
of the structure with the number of elements as ne. It should be noted
that the structural system could be linear or nonlinear, depending on
the definition of the dissipating and stiffness force vectors.

The state vector is defined as

= ⎡
⎣⎢

⎤
⎦⎥

X
x
x

t
t
t

( )
( )
̇ ( ) (2)

Transforming the equation of motion in Eq. (1) as a state equation,
we have

= = ⎡
⎣⎢ − −

⎤
⎦⎥

−X J X θ f
x

M Bf F ẋ F x θ
t t t

t
t t t ,

̇ ( ) ( ( ), , ( ))
̇ ( )

{ ( ) ( ( )) ( ( ) )}c s
1 (3)

Usually, only a limited number of accelerometers are deployed on
structures to measure the vibrational acceleration responses. The
measurement vector can be written as
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= +
= − + +−

Y dx v
Df dM F x F x θ v

t t t
t t t t

( ) ¨ ( ) ( )
( ) { ( ̇ ( )) ( ( ), )} ( )c s

1 (4)

where = −D dM B1 , d is associated with the locations of accelerometers
and is the measurement noise vector assumed to be a Gaussian white
noise vector with zero mean and a covariance matrix =v v RE δ( )i j

T
ij ij, in

which δij is the Kroneker delta and Rij is the variance matrix of the
measurement noises.

Eq. (4) can be further expressed in the discrete form as [5,23]

= + +Y h X θ Df ν( , )k k k k (5)

where = − +−h X θ dM F x F x θ( , ) { ( ̇ ) ( , )}k c k s k
1 with xk̇ and xk re-

presenting the corresponding discrete values of x ṫ ( ) and x t( ) at the
time instant =t k tΔ , Y k is the l-dimensional observation (measured)
vector at =t k tΔ ( tΔ is the sampling interval time), and Xk, f k, and νk
are the corresponding discrete values at time instant =t k tΔ .

2.2. Force identification based on Kalman filter technique

The state vector will be estimated first by using the classic Kalman
estimator [6], and the unknown excitations are identified by the least
squares estimation. Based on the classic Kalman estimator, the state
vector at time = +t k t( 1)Δ can be estimated as follows

 = + − −∼
+ +X X K Y h X θ Df{ ( , ) }k k k

e
k k k1 1 (6)

and

 ∫= +∼
+

+
X X J X θ f dt( , , )k k k

k
k k1

1

(7)

where ̂ +Xk 1,
∼

+Xk 1, ̂fk are the estimation of +Xk 1, the state prediction of
+Xk 1 and the estimation of f k, respectively. Kk

e is the Kalman gain
matrix at time instant =t k tΔ

= + −K P H H P H RΦ ( )k
e

k k k k k k
T T 1 (8)

where

= +I A tΦ Δk k (9)


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∂
∂
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J X θ f

X
( , , )

k
k k

k (10)


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∂
H h X θ

X
( , )

k
k

k (11)

and Pk is the error covariance matrix of ̂Xk, which can be obtained in a
recursive formula as [6]

= −+ + +P P K H PΦ Φ Φk k k k k
e

k k k1
T

1 1 (12)

When the measurements are available at the DOFs where the ex-
ternal excitations are applied, D in Eq. (4) is a non-zero matrix. The
unknown external excitations +̂fk 1 can then be identified from Eq. (5)
by using the least square method through the following equation

 = −+
−

+ +f D D D Y h X θ( ) { ( , )}k
T T

k k1
1

1 1 (13)

2.3. System identification from subset responses

A large number of unknowns in a large structure can be divided into
several smaller zones based on its finite element mesh configuration.
The unknown system parameter vector θ can be separated as several
system parameter subsets ⋯θ θ θ[ , , , ]r1 2 , where θi contains all the un-
known damage indices of the i-th ( ⩽ ⩽i r1 ) zone. Vibration tests are
conducted in the divided smaller zones with different sensor config-
urations and excitations are applied to obtain different sets of re-
sponses. ẍm i, is the measured acceleration response vector from the
sensors in the i-th zone, and f i is the excitation force acting on the i-th
zone.

The responses measured from different zones can be written as se-
parate functions gi of the structural parameters and excitations

… − =
… − =

⋮ ⋮
… − =

⋮ ⋮
… − =

θ θ θ f x
θ θ θ f x

θ θ θ f x

θ θ θ f x

g
g

g

g

( , , , , ) ¨ 0
( , , , , ) ¨ 0

( , , , , ) ¨ 0

( , , , , ) ¨ 0

r m

r m

i r i m i

r r r m r

1 1 2 1 ,1

2 1 2 2 ,2

1 2 ,

1 2 , (14)

After identifying the excitation force in the first stage, the unknowns
in these functions are the damage indices of the structural parameters.
The problem is to find out the solution of Eq. (14), which can be as-
sembled as Eq. (15)

=G θ( ) 0 (15)

By using Newton method [25], we have

= + ′ − =+G θ G θ G θ θ θ( ) ( ) ( )( ) 0n n n n1 (16)

′ = ′ −+G θ θ G θ θ G θ( ) ( ) ( )n n n n n1 (17)

= − ′+ −θ θ G θ G θ[ ( )] ( )n n n n1 1 (18)

Zone 2

Zone 1

x  (t)xg

Fig. 1. The nonlinear shear building model in the numerical study.

Fig. 2. Identified system parameters with iterations.
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where ′G θ( )n is the Jacobin matrix of G θ( )n and can be calculated from
Eq. (19).

′ =
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2.4. Newton-SOR method

When an iterative successive over relaxation (SOR) method is used
to solve Eq. (17) in each iteration, the whole process is called Newton-
SOR method [24]. It could be used for solving the nonlinear systems of
equations. When l iterations are used inside the SOR loop, it is called l-
step Newton-SOR method. A comprehensive description of this method
can be found in [24]. The SOR solution is used to reconstruct the Ja-
cobian matrix for the next solution step so that it is not necessary to
have a very high precision for the initial SOR solution [25]. Therefore,
One-step Newton-SOR method is used in this study. For the

Fig. 3. Identified ground motion without noise effect.

Fig. 4. Identified system parameters with noise effect.

Fig. 5. Identified ground motion with noise effect.

Fig. 6. A linear truss structure model in the nu-
merical study.
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completeness of the paper, the procedure of Newton-SOR method will
be briefly described and the One-step Newton-SOR method will also be
presented.

Eq. (17) can be written as Eq. (20) with ′G θ( )n decomposed as Eq.
(21)

− = ′ −+L U θ G θ θ G θ( ) ( ) ( )n n n n1 (20)

′ = −G θ L U( )n (21)

where L is adiagonal matrix and U is a non-diagonal matrix. The right-
hand-side of Eq. (20) is defined as = ′ −b G θ θ G θ( ) ( )n n n . Eq. (20) can
then be further written as Eqs. (22) and (23)

= ++ +Lθ Uθ bn n1 1 (22)

= + = ⋯+ + −Lθ Uθ b l, 1, 2, 3,n l n l1, 1, 1 (23)

where superscript l denotes the iteration number in the SOR iteration.
The solution of Eq. (22) is given in Eq. (24) by applying the SOR
method

= ++ − + −θ L Uθ b( )n l n l1, 1 1, 1 (24)

Defining = −V L U1 , we have

− = − = −− −V I L U I L U L( )1 1 (25)

Then Eq. (24) can be rewritten as:

= ++ + − −θ Vθ L bn l n l1, 1, 1 1 (26)

+ −θn l1, 1 can be expanded similarly as Eq. (26) until +θn 1, 0 is reached.
We then have

= + + + …
= + − + + + …
= + + + … − +

+ + − −

+ + − −

+ − + −

θ V θ I V V V L b
θ V I θ I V V V L b
θ I V V V V I θ L b

( )
( ) ( )
( )(( ) )

n l l n l

n l n l

n l n

1, 1, 0 2 1 1

1, 0 1, 0 2 1 1

1, 0 2 1 1, 0 1 (27)

Substituting = ′ −b G θ θ G θ( ) ( )n n n , V = L−1U, and Eq. (21) into the
last bracket of the right-hand-side of Eq. (27), we obtain

− + = − + − −+ − − + −V I θ L b L U L θ L L U θ G θ( ) ( ) (( ) ( ))n n n n1, 0 1 1 1, 0 1 (28)

Noting that the initial value and ending value in SOR iteration as
≡+θ θn n1, 0 and ≡+ +θ θn l n1, 1 respectively, and substituting Eq. (28) into

Eq. (27), we have

= − + + ⋯ ++ − −θ θ I V V V L G θ( ) ( )n n l n1 2 1 1 (29)

When → ∞l , Eq. (29) is equivalent to the Newton method as

Fig. 7. The sensor placements in divided zones of the truss
model.

Table 1
Identification results with different sampling rates and covariance matrices.

Sampling frequency (Hz) Covariance matrix R

I 0.01 × I 0.001 × I

500 7.74% 7.32% 6.49%
1000 2.45% 2.21% 2.49%
2000 0.73% 0.74% 1.22%
5000 0.34% 0.18% 0.17%

Note: I is an identity matrix.
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presented in Eq. (18).
When =l 1, we have the One-step Newton-SOR iteration as

= −+ −θ θ L G θ( )n n n1 1 (30)

With +θn 1 divided as several subsets ⋯+ + +θ θ θ[ , , , ]n n
r
n

1
1

2
1 1 , we have

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⋱

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

×

⎡

⎣

⎢
⎢
⎢
⎢

−
−

⋮
−

⎤

⎦

⎥
⎥
⎥
⎥

+

+

+

∂
∂

∂
∂

∂
∂

−

θ
θ

θ

θ
θ

θ

g θ f x
g θ f x

g θ f x

0 0 0

0 0 0

0 0 0
0 0 0

( , ) ¨
( , ) ¨

( , ) ¨

g
θ

g
θ

g
θ

n

n

r
n

n

n

r
n

n
m

n
m

r
n

r m

1
1

2
1

1

1

2

1

1 1 ,1

2 2 ,2

,r

n

n

r
n

1

1

2

2

r
(31a)

or

1) Zone 1 

2) Zone 2 

3) Zone 3 

Fig. 8. Damage identification results without noise effect.
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Tikhonov regularization technique [26] is applied to solve Eq. (31)
and the solution is obtained as
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After each subset parameters +θi
n 1 is obtained from Eq. (32), the

global structural parameters are updated iteratively and the sensitivity
matrix ′ +G θ( )n 1 is re-calculated based on the updated parameters. By
using Eq. (32), the parameters in each zone are updated individually.
However, it should be noted that an iterative scheme will be used. The
analytical responses and sensitivities in each iteration are obtained
based on the global structure. Although the proposed approach is
conducted based formulating the global optimization as a set of opti-
mization problems for several smaller zones, the convergence can be
achieved by using the iterative identification scheme [24].

2.5. Computational procedure of the proposed approach

The proposed approach can be applicable for both linear and non-
linear structural identification. The implementation procedure is sum-
marized as follows:

Step 1: Divide the structure into smaller zones according to its finite
element mesh configurations. Dynamic vibation tests are performed
in each zone to obtain the corresponding sets of responses.
Step 2: Define the initial value of parameters as = ⋯θ θ θ θ[ , , , ]r

0
1
0

2
0 0

based on the baseline model.
Step 3: The excitation forces in each zone of the structure

⋯f f f[ , , , ]r1 2 can be identified from Eqs. (6)-(13) with the corre-
sponding set of measurement data in each zone.
Step 4: Calculate responses of the whole structure from Eq. (1) for
each test in a specific zone, and the sensitivity of responses with
respect to the structural parameters of each zone ∂ ∂ +g θ/i i

n 1 are ob-
tained by using Newmark-beta method [22].
Step 5: The changes in the parameters of each zone +θi

n 1 can be
calculated by using Eq. (32). The finite element model of the global
structure is then assembled as = ⋯+ + + +θ θ θ θ[ , , , ]n n n

r
n1

1
1

2
1 1 .

(a) True and identified forces in Zone 1 

(b) True and identified forces in Zone 2 

(c) True and identified forces in Zone 3 

Fig. 9. The comparison between the identified and true forces
without measurement noise.
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Step 6: Repeat Steps 3–5 until the convergence criterion in Eq. (33)
is met.

− × ⩽
+

+
θ θ

θ
Tol100%

n n

n

1

1 (33)

where Tol is the defined tolerance value, which will be given in the
following numerical and experimental studies.

Repeated vibration tests with a limited number of sensors can be
conducted in all divided zones separately so as to reduce the required
number of sensors and channels for the updating of the target zones

when a substructural strategy is used, and the computational load
consumed in updating the global large-scale structures. Only the mea-
sured responses are used for identification. These are the main merits of
the proposed approach. However, like many output only damage de-
tection methods [4,6,11,14], the proposed approach requires that: (a)
the number of the measured responses is larger than that of the un-
known excitations; and (b) the responses at the locations of the applied
excitations in each zone shall be available. These two conditions can be
satisfied for engineering applications, for example, when using impact
hammer, shakers or drop-weight impact machines for the dynamic tests

(a) Zone 1 

(b) Zone 2 

(c) Zone 3 

Fig. 10. Damage identification results with different noise levels.
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in each zone, the information regarding the locations of these applied
excitations is usually available and the number of placed sensors shall
be larger than the number of a few excitation forces.

3. Numerical studies

To validate the effectiveness and accuracy of the proposed approach
for system identification of linear and nonlinear structures, numerical
studies on a nonlinear multi-story shear frame and a planar steel truss
are conducted. Only measured responses are used for the identification
of the external excitation and structural parameters.

3.1. System identification of a 6-DOF nonlinear structure

Considering a six-storey nonlinear elastic Duffing-type shear
building subjected to a ground motion acceleration x t¨ ( )g , the system
equation of motion is given by [5,23]

∑ + − +

− + −
= =

= + +

+ + + +

( )m x t c x t c x t k x t

k x t K x t K x t
m x t i

¨ ( ) ̇ ( ) ̇ ( ) ( )

( ) ( ) ( )
¨ ( ) ( 1, 2, 3, 4, 5)

i j
i

j i i i i i i

i i i i i i

i g

1 1 1

1 1
3

1 1
3

(34a)

∑ + +

+ = =
=( )m x t c x t k x t

K x t m x t i

, ¨ , ,( ) ̇ ( ) ( )

( ) ¨ ( ), ( 6)

i j
i

j i i i i

i i i g

1

3
(34b)

in which xi is the inter-storey drift displacement between the i-th and (i
+ 1)-th stories (i = 1–5), = = ⋯ = =m m m 600 kg1 2 6 ,

= = ⋯ = =c c c 1 kN s/m1 2 6 , = = ⋯ = = ×k k k 1.2 10 N/m1 2 5
5 , =k6

×0.6 10 N/m5 , = = ⋯ = = ×K K K 2 10 N/m1 2 5
8 3, and =K 10 N/m6

8 3.
The applied ground motion is simulated based on a similar procedure in
a previous study [27] and generated as a white noise acceleration his-
tory, which is then scaled to have a maximum peak ground acceleration
(PGA) of 0.3 g and low pass filtered with a frequency range from 0-
20 Hz. This relatively small ground motion is applied to ensure the
structure behaves linearly. For the elastic structure with no nonlinear
terms, that is = = ⋯ = =K K K 01 2 6 , the first three natural frequencies
are =ω 0.538 Hz1 , =ω 1.473 Hz2 and =ω 2.251 Hz3 .Sensors are

(a) Identified force in zone 1 

(b) Identified force in zone 2 

(c) Identified force in zone 3 

Fig. 11. The comparison between the identified and true forces with
different noise levels in the measurements.
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installed at each floor to measure the accelerations with a sampling
frequency of 2000 Hz. In this example, the masses ( ⋯m m m, , ,1 2 6),
damping ( ⋯c c c, , ,1 2 6) and stiffness ( ⋯k k k, , ,1 2 6) are assumed known.
The parameters of the nonlinear Duffing model ( ⋯K K K, , ,1 2 6) and the
input ground motion x t¨ ( )g are unknowns to be identified. Based on the
proposed approach, the Kalman filter technique is used to identify the
excitation force, and the system parameters are updated with the
Newton-SOR method.

The shear building structure is divided into two zones, namely, a
lower level structure and an upper-level structure, as shown in Fig. 1.
The first zone consists of unknown parameters ( =θ K K K[ , , ]1 1 2 3 ) and the
second zone consists of unknown parameters ( =θ K K K[ , , ]2 4 5 6 ). There
are respectively three accelerometers in each zone to measure the vi-
bration responses. The response data collected in the first second are
used for the identification. The convergence criterion in Eq. (33) is set
equal to −10 6 for the case without noise and −10 3 for the case with noise.
The initial value of unknown parameters are defined as

= = ⋯= = ×K K K 2.4 10 N/m1 2 5
8 3 and = ×K 1.2 10 N/m6

8 3.
Firstly, the unpolluted acceleration responses are used to verify the

accuracy of the proposed approach for the identification of nonlinear
system parameters. Fig. 2 shows the identified results with iterations
when responses without smeared with noise are used for identification.
The identified ground motion as shown in Fig. 3 matches well with the
true ground motion. The relative error in the ground motion identifi-
cation is 0.115%. These results show that the proposed approach can
identify the system parameters and unknown ground motion simulta-
neously with a very good accuracy.

To study the noise effect in the measurements on the identification

accuracy, the noisy response is simulated by adding a random white
noise to the original analytical response as

= +x x NE σ x¨ ¨ (¨)m p noise (35)

where Ep is percentage of the noise level, Nnoise is a standard normal
distribution vector with zero mean and unit standard deviation, σ x(¨) is
the standard deviation of the original analytical acceleration response.
5% and 10% noise levels are considered in this study. The 4th-order
Butterworth band-pass filter of a frequency range from 0.1 to 100 Hz is
used to pre-process the signals and remove the high frequency noise.

The identified nonlinear system parameters with measurement
noises are shown in Fig. 4. The maximum identified error for 5% noise
case is 4.25% at the floor 6, while the maximum identified error for
10% noise case is 5.63% at the floor 3. The other identification errors
are small. The comparison between the identified and true ground
motions is shown in Fig. 5. The relative errors are 1.45% and 3.49%
between the true and identified ground motions for the 5% and 10%
noise cases, respectively. These results demonstrate that the proposed
approach can well identify the nonlinear system parameters and the
excitation force even under a significant measurement noise effect.

Fig. 12. Laboratory steel frame model.

Fig. 13. Dimensions of the steel frame model (unit: mm).

Table 2
Measured and analytical natural frequencies of the experimental model before and after
updating.

Mode Tested Before updating After updating

Analytical (Hz) Error (%) Analytical (Hz) Error (%)

1 4.645 4.810 −3.552 4.636 −0.1905
2 13.705 14.267 −4.101 13.714 0.0635
3 22.554 23.238 −3.033 22.558 0.0156
4 30.695 31.418 −2.355 30.776 0.2649
5 38.241 38.528 −0.7505 38.225 −0.0426
6 44.434 44.325 0.245 44.422 −0.0269
7 48.826 48.614 0.434 48.712 −0.2343
8 52.306 51.246 2.027 52.161 −0.2771
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3.2. System identification of a linear plane truss structure

A simply-supported plane truss structure used in a previous work
[22] is selected for conducting a comparison study. The dimensions are
shown in Fig. 6. The structure is modeled with forty-six planar truss

finite elements. The finite element model has 40 degrees-of-freedom.
The cross-sectional area of the bar is 0.0016 m2. The first eight natural
frequencies of the structure are 0.73, 2.02, 2.86, 5.05, 6.51, 7.77, 9.91
and 10.49 Hz respectively. Rayleigh damping with ξ1 = 0.01 and
ξ2 = 0.01 is assumed as the damping ratios of the first two modes. The

Fig. 14. Mode shapes before and after updating.
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mass density is ×7.8 103 kg/m3, and the elastic modulus is 206 GPa.
The truss is pin-supported at Node 1 and roller-supported at Node 18.
The restraints at the supports are represented by a large stiffness of
108 kN/m.

3.2.1. Force identification
The proposed approach requires to identify the unknown input force

and structural parameters at each iteration. Since the accuracy of the
force identification results would affect the accuracy of damage iden-
tification, the accuracy of force identification with different settings is
studied in this section. To investigate the selection of different sampling
rates and covariance matrices on the force identification accuracy,
taking zone 2 as an example, structural parameters are assumed as
known and only the force on Node 10 is considered as unknown.

The sensor layout is shown in Fig. 7(b). The effect of different
sampling rates and covariance matrices on the force identification is
studied. Table 1 shows the errors in the force identification results with
four different sampling rates from 500 Hz to 5000 Hz and three cov-
ariance matrices in Kalman filter. Since the structure is at rest before
the application of external force, the value of ̂X0 in Eq. (6) is selected as
zero for all studies.

The identification results listed in Table 1 indicate that the sampling
rate may significantly affect the accuracy of force identification, how-
ever, the definition of covariance matrix of measurement noise may
not. The error in the identified force increases when the sampling rate
decreases because the responses with a higher sampling rate consist of
more information. Based on this parametric study and considering the
balance between the computational load and identification accuracy,
the sampling rate and the covariance matrix are defined as 2000 Hz and
0.01 × I, respectively.

3.2.2. Decentralized structural identification
The truss structure is arbitrarily divided into three zones. The first

zone, second zone and third zone consist of members 1–15 with un-
known elemental stiffness parameters ∼α α1 15, members 16–30 with
unknown elemental stiffness parameters ∼α α16 31 and members 31–46
with unknown parameters ∼α α32 46. The placed accelerometers for
measuring the vibration responses in each zone are shown in Fig. 7.
Vibration measurements in a specific zone are only used for the iden-
tification of excitation forces and stiffness parameters associated with
this zone. The input force is a band pass ambient force with a band-
width of 0–400 Hz and a standard deviation of 40 N. The sampling rate
is 2000 Hz and 1 s vibration data are used for the identification. 10%,
20% and 15% stiffness reductions are assumed in elements 8, 24 and
38, respectively.

Acceleration responses with and without noise effect from the da-
maged structures are used. Fig. 8 shows the identification results for
different subsets of structural parameters in all the three zones when
measurements without noise effect are used for the identification. The
locations and severities of the preset three damages in different zones
can be accurately identified. Small identification errors (less than 2%)
are observed in other undamaged elements. This may be caused by the
numerical errors in the proposed algorithm. Fig. 9 shows the compar-
ison of true and identified excitation forces without noise effect. The
identified force matches well with the true one with a relative error of
0.0434%. When noisy responses are used for identification, the fourth-
order Butterworth band-pass filter with a frequency range from 0.1 to
500 Hz is used to remove the high frequency noise. The identified
stiffness reduction factors with different levels of measurement noise
are shown in Fig. 10. Both damage locations and severities in different
zones are well identified. The maximum identified error for the 5%
noise case is 5.31% at element 5 and the other errors are less than 5%.
There are two large identified errors, that is, 6.53% at element 19 and
8.71% at Element 20, for 10% noise case. The identified forces are
compared with the true force in Zone 2 and shown in Fig. 11. The re-
lative errors in the force identification are 14.43% and 23.16% for the
5% noise case and 10% noise case, respectively. The identified excita-
tion forces generally show a good agreement with the true force, even
the recorded data are polluted with noise. These results demonstrate
that the proposed approach can accurately identify the structural da-
mage and external force when no noise responses are used. The iden-
tification is also good when significant measurement noise effect is
considered.

It should be noted that in the previous work [22], it took about 3 h
for the model updating. However, the proposed approach only needs
less than 5 min with the same simulation data since only the unknown
parameters in a smaller zone are involved in the sensitivity based
identification. Two advantages of the improved approach has been
demonstrated through the numerical studies: (1) It can be used for both
linear and nonlinear system identification with output only; (2) It takes

(a) Introduced damage at the 2nd floor 
(40% reduction of cross section area of one column)

(b) Introduced damage at the 7th floor 
(20% reduction of cross section area of one column)

Fig. 15. Introduced damages of the frame model.
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less computational time compared with the previous method.

4. Experimental verifications

Experimental verifications on an eight-story shear-type steel frame
model are conducted to validate the proposed decentralized system
identification approach. Fig. 12 shows the testing model in the la-
boratory. The height and width of steel structure are 2000 mm and
600 mm, respectively. The floor of each story is constructed by thick
steel plates (100 mm× 25 mm), and the two columns of each story
have the same cross section with a width of 50 mm and a thickness of
5 mm. The beams and columns are welded to form rigid joints. The
bottom of two columns is welded onto a thick and solid steel plate,
which is fixed to the strong floor. The dimensions of the frame model
are shown in Fig. 13. The initial elastic modulus of the steel is estimated
as 200 GPa, and the mass density 7850 kg/m3.

4.1. Experimental setup and initial model updating

An SINOCERA LC-04A hammer with a rubber tip is used to apply
the excitation on the model. KD1300 accelerometers are installed at all
the floors to measure horizontal acceleration responses. A commercial
data logging system INV306U and its associated signal analysis package
DASP V10 are used for data acquisition. The initial shear-type building
finite element model is built based on the dimensions and material
properties of the frame. An evitable discrepancy between the numerical
finite element model and experimental model exist due to the model-
ling errors and uncertainties in the material properties and boundary
conditions. Vibration testing data from the experimental model under
the healthy state are used to perform an initial model updating to
minimize the difference between the experimental and analytical
models.

Vibration tests are performed by using the hammer to hit on the
frame model in different divided zones. Both applied force from the
hammer and accelerations are recorded for 60 s. Only the first 0.5 s
data are selected for damage detection. The sampling rate is set as

(a) Identified results of case 1 

(b) Identified results of case 2 

Fig. 16. Damage identification results in experimental studies.

Fig. 17. Comparison of true and identified force in Zone 2 (Case 2).
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1024 Hz, and the cut-off frequency range for the band-pass filter is
defined from 1 Hz to 100 Hz for all tests. The finite element model of
the shear frame is divided into two zones. The first zone consists of 1–4
floors, and the second zone 5–8 floors. For the first vibration test,
sensors are installed in the first zone from 1 to 4 floors to measure the
horizontal acceleration responses when subjected to a hammer impact
force at the third floor. For the second test, sensors are installed in the
second zone from 5 to 8 floors to measure the vibration responses with
the impact located at the 7th floor. Only the structural stiffness para-
meters and excitation forces are updated with the proposed approach.
The measured and analytical natural frequencies of the experimental
model before and after model updating are listed in Table 2. The
maximum error in the frequencies after updating is only 0.26%. The
measured and analytical mode shapes of the model are shown in
Fig. 14. The mode shapes after model updating match very well with
the measured mode shapes from the vibration tests. These indicate that
an accurate initial finite element model is achieved to serve as the
baseline model in the subsequent studies on structural identification.

4.2. Decentralized system identification

Damages are introduced by reducing the cross section of the column
of the frame model. Two damage cases, i.e. case 1 and case 2, are in-
troduced. Only a single damage is introduced in case 1 with 40% cross
section reduction of a column of the 2nd floor of the frame model. This
will produce 20% reduction to the equivalent stiffness of the 2nd floor.
Case 2 has multiple damages. Besides the damage in case 1, another
damage is introduced with 20% cross section of a column at the 7th
floor of the frame model. This is equivalent to 10% stiffness reduction
in the 7th floor. Those introduced damages in the second and seventh
floors are shown in Fig. 15.

The frame is tested with the same sensor placement and definition
of zones as described in Section 4.1. The reduction of the mass caused
by the damage is neglected. Measured responses are used to identify the
structure damages and applied excitation force. The updated numerical
model obtained in Section 4.1 is used as the baseline model. The
identification results for those two cases are shown in Fig. 16. In case 1,
the identified damage in the second floor is 19%, which is very close to
the true value of 20%. For case 2, the identified stiffness reductions are
19.8% at floor 2 and 10.4% at floor 7. It can be observed from the
identification results of those two cases, both damage locations and
severities can be well identified with the proposed approach. However,
it should be noted that some errors, i.e. around 4% false identified
stiffness reductions are observed in the 3rd floor to the 6th floor. The
identified forces have a good agreement with the measured forces, i.e.
the force applied in Zone 2 in case 2, as shown in Fig. 17. The relative
error in the force identification is 35.57% which is larger than that in
numerical studies. These errors in identified excitation force and stiff-
ness parameters are due to the noise effect in measurements and un-
certainty effect in finite element model and experimental tests. The
above results in experimental verifications demonstrate that the pro-
posed approach well identify the structural damage and applied ex-
citation force.

5. Conclusions

This paper proposes an improved decentralized system identifica-
tion approach for both linear and nonlinear structures with output
measurements only. The proposed approach divides a large scale
structure into several zones for identification. Kalman filter technique is
used to identify the unknown input force, and Newton-SOR method is
adopted for identifying the unknown structural parameters. The ex-
ternal excitations and structural parameters are updated iteratively.
Numerical studies on a six-floor nonlinear system and a linear planar
truss structure demonstrate that the proposed approach is effective for
output−only structural identification with a few sensors even when

10% noise effect is included in the measured data. An experimental
eight-story shear-type steel frame structure was also tested in the la-
boratory to validate the proposed approach. Two damage cases were
introduced in the model. The applied excitation force and structure
damage in both the damage cases are well identified with the measured
responses. It is demonstrated that the proposed approach can be used
for both linear and nonlinear system identification by using only
measured responses, and needs less number of measurement sensors,
and less computational time compared with the existing methods. More
experimental investigations on using the proposed approach for the
identification of nonlinear structures shall be conducted in the future to
further demonstrate its effectiveness.
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