On Simulation and Optimization of Freeway Network Operations

B. Wiwatanapataphee & Yong Hong Wu Curtin University of Technology

Progress from last PSG meeting

- Computer implementation of ramp metering and VSL on the Kwinana freeway traffic flow simulation model
- Further data analysis: traffic prediction by LSTM & BAM-LSTM methods
- Optimization of freeway traffic flow via ramp metering

1. Computer implementation of ramp metering and VSL on the Kwinana freeway traffic flow simulation model

Ramp Metering Series

LUMS

VSLS

VSLS-20501 VSLS-20502

6 Parking areas

Numerical Test Schemes VSL Period: 6:00-10:00; 14:00-18:00

VSL Scheme	Ramp Metering (90 sec per cycle)	LUMS Speed	VSLS Speed
1	80 G 5 Y 5 R	90	70
2	80 G 5 Y 5 R	100	70
3	RSC - I	90	70
4	RSC - I	100	70

VSL Application Design

VSLS (70 km/h) and LUMS (90 km/h)

LUMS 90 & VSLS 70

LUMS 100 & VSLS 70

LUMS 90 & VSLS 70 & RSC1 (from 6 AM)

LUMS 100 & VSLS 70 & & RSC (from 6 AM)

	Statistics (Average)				
	Duration	Waiting	Time	Depart	
Scheme	(S)	lime(s)	Loss(s)	Delay(s)	
n/a	391.17	8.3	120.73	97.74	
1	391.97	8.21	117.36	97.34	
2	378.56	6.81	110.13	95.53	
3	385.83	9.04	111.58	93.90	
4	373.15	8.64	105.16	92.09	

2. Further data analysis: traffic prediction by LSTM & BAM-LSTM methods

LSTM Cell

Traditional LSTM with forget gates*

Initial values $c_0 = 0$ and $h_0 = 0$. The operator 'o' denotes the Hadamard product

$$\begin{split} f_{t} &= \sigma_{g}(W_{f}x_{t} + U_{f}h_{t-1} + b_{f}) \\ i_{t} &= \sigma_{g}(W_{i}x_{t} + U_{i}h_{t-1} + b_{i}) \\ o_{t} &= \sigma_{g}(W_{o}x_{t} + U_{o}h_{t-1} + b_{o}) \\ h_{t} &= o_{t} \circ \sigma_{h}(c_{t}) \\ c_{t} &= f_{t} \circ c_{t-1} + i_{t} \circ \sigma_{c} (W_{c}x_{t} + U_{c}h_{t-1} + b_{c}) \end{split}$$

where σ_q : a sigmoid function

- σ_c : a hyperbolic function
- σ_h : a hyperbolic tangent function

Prediction for yesterday

Traffic flow rate for yesterday

Prediction for today

Bidirectional Recurrent Neural Network

Hyperparameters for BRNN

- Input size = 144000
- Sequence length = 1440
- Number of layers = 2
- Hidden size = 50
- Number of classes = 2
- Learning rate = 0.005
- Batch size = 120
- Number of epochs = 100

Traffic Flow Rate Veh/minute

Traffic Speed km/hr

Traffic Density Veh/meter

Time (Mintue)

3 Optimization of freeway traffic flow via ramp metering

PhD Student: C. Gu; Supervisors: YH Wu & B Wiwatanapataphee

13 km26 cells8 on-ramps4 off-ramps

Car Park

Bridge On-ramp

Optimization Model

Objective function:
$$D_{t} = \sum_{l=t}^{t+N_{p}-1} \left[\sum_{i=1}^{I} (\rho_{i,l}\Delta x_{i}\Delta t - \frac{f_{i,l}\Delta x_{i}\Delta t}{v_{i}}) + \sum_{j=1}^{J} q_{j,l}\Delta t\right].$$
s.t.
$$\rho_{i,t+1}^{\varepsilon} = \rho_{i,t}^{\varepsilon} + \frac{\Delta t}{\Delta x_{i}} \times (f_{i-1,t}^{\varepsilon}(\rho_{i-1,t}^{\varepsilon}) - f_{i,t}^{\varepsilon}(\rho_{i,t}^{\varepsilon}) + r_{i,t} - s_{i,t}), \forall i, t,$$

$$q_{j,t+1} = q_{j,t} + (d_{j,t} - r_{j,t})\Delta t, \forall j, t,$$

$$0 \leq \rho_{i,t}^{\varepsilon} \leq \rho_{max,i}, \forall i, t,$$

$$0 \le q_{j,t} \le q_{max}, \forall j, t.$$

$$0 \le r_{j,t} \le r_{max,j}, \forall j,t.$$

$$f_{i,t} = \min\{v_i \rho_{i,t}, C_i, C_{i+1}, w_{i+1}(\rho_{max,i+1} - \rho_{i+1,t}), \forall i, t, \}$$

Model Predictive Control (MPC)

Demand flows and out-going flows

(a) Mainline demand and on-ramp demands

(b) Out-going flow

Density, speed and flow from actual measured data 11/06/2018

(a) Density

(b) Flow

(c) Speed

Numerical results for inequality relaxation for Np=33,Nc=4

0.6

(a) Density

Np=33,Nc=4

0.5 0.4 Ramp metering m 0.2 0.1 ۰. 100 200 300 400 500 600 700 800 900 t (s)

(c) Queue length

(d) Ramp metering

Numerical results for inequality relaxation for Np=33,Nc=8

(a) Density

(c) Queue length

(d) Ramp metering

Numerical results for approximated model for Np=33,Nc=4

(a) Density

(c) Queue length

(d) Ramp metering

Numerical results for approximated model for Np=33,Nc=8

Np=33,Nc=8

120

100

80

60

40

20

°6

100

200

300

Queue length

(b) Flow

٢,

۲,

-r₄ -r₅

r_e

٢,

900

1000

(c) Queue length

500

t (s)

600

700

400

Comparison of total delay and ramp delay

Name of model	Total delay	Ramp delay
No control	1270.3164h	0h
Inequality relaxation model with $Nc = 4$	781.3429h	87.3461h
Inequality relaxation model with $Nc = 8$	772.7768h	325.4634h
Approximated model with $Nc = 4$	765.9473h	199.2427h
Approximated model with $Nc = 8$	761.2329h	105.0768h

ACKNOWLEDGEMENTS

The project is funded by the Australian Research Council, Main Roads WA, and Roads and Maritime Services NSW.

Acknowledgement is made to the Australian Research Council, Main Roads WA, Roads and Maritime Services NSW, and the Australia's Sustainable Built Environment National Research Centre (SBEnrc) for their support.

THANK YOU

For Your Attention

