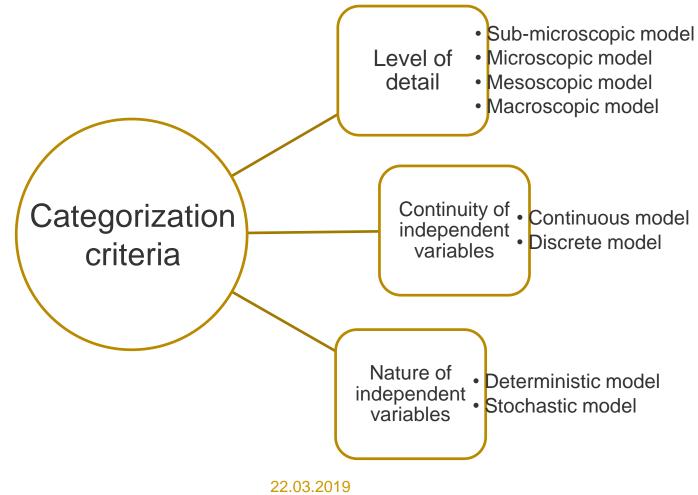


Shuyuan XU

Integrated Control Strategy for Variable Speed Limit (VSL) and Ramp Metering (RM)

-- Literature Review

22.03.2019


Content

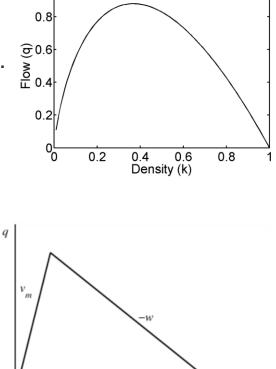
- Literature review
 - Categorization of traffic flow models
 - Evolution of traffic flow models (macro-focused)
- METANET (target model)
 - Development history
 - Principles and key parameters
- Future plan

Literature review

- Categorization of traffic flow models

Literature review

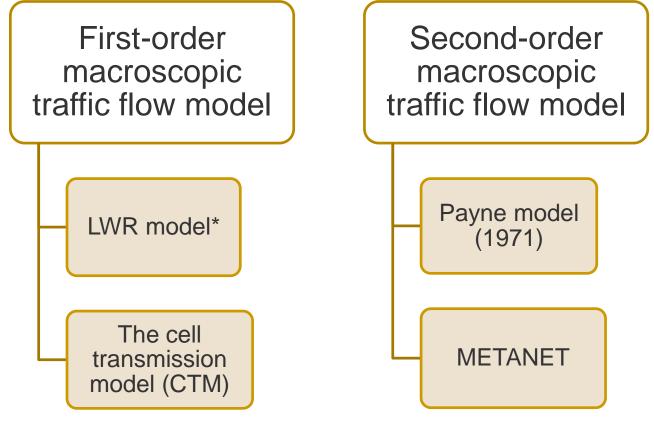
-- macroscopic traffic flow models


Core assumption

Traffic flows as a whole and is compared to fluid streams.

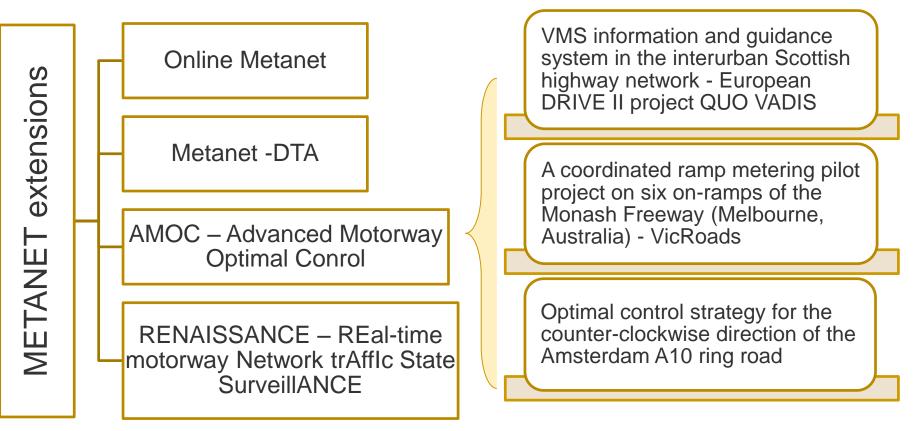
- Two basic equations
 - Conservation equation -- $\frac{\partial \rho}{\partial t} + \frac{\partial q}{\partial x} = g(x, t)$

$$-\frac{\partial}{\partial t}\int_{x_1}^{x_2}\rho(x,t)dx = q(x_1,t) - q(x_2,t) + g(x,t)$$


• Traffic flow equation -- $q = v \times \rho$

Literature review

-- macroscopic traffic flow models


Two categories

METANET

-- Evolutional history

• Features: Macroscopic; Deterministic; Second-order.

METANET

Conservation equation:

Segment i
 Segment i

$$Segment i - 1$$
 L_i
 λ_i
 $\lambda_{i-1}q_{i-1}$
 Q_i
 $\rho_i v_i$
 $\lambda_i q_i$
 $\lambda_{i-1}q_{i-1}$
 Q_i
 $\rho_i v_i$
 $\lambda_i q_i$
 $\lambda_i q_i$
 Detection Station
 S_i

 $\rho_i(k+1) = \rho_i(k) + \frac{T}{L_i \lambda_i} (\lambda_{i-1} q_{i-1}(k) - \lambda_i q_i(k) + r_i - s_i)$

- Traffic flow equation: $q_i(k) = \rho_i(k)v_i(k)$
- Mean speed dynamics on the basis of static speed-density relationship: $v_{i}(k+1) = v_{i}(k) + \frac{T}{\tau} \{V[\rho_{i}(k)] - v_{i}(k)\} + \frac{T}{L_{i}} v_{i}(k)[v_{i-1}(k) - v_{i}(k)] + \frac{vT}{\tau L_{i}} \frac{\rho_{i+1}(k) - \rho_{i}(k)}{\rho_{i}(k) + \kappa}$ Relaxation Convection Anticipation $V[\rho_{i}(k)] = v_{free} exp\left[-\frac{1}{\alpha} \left(\frac{\rho_{i}(k)}{\rho_{cr}}\right)^{\alpha}\right]$
- On- and off-ramps:

$$r_{i}(k) = min\left\{d_{ramp}(k) + \frac{\omega_{ramp}(k)}{T}, Q_{max,ramp}, Q_{max,ramp}\left(\frac{\rho_{jam,i} - \rho_{i}(k)}{\rho_{jam,i} - \rho_{cr}(k)}\right)\right\}$$
$$\omega_{ramp}(k+1) = \omega_{ramp}(k) + T\left[d_{ramp}(k) - r_{i}(k)\right]$$

22.03.2019

METANET

During the time interval [kT, (k+1)T]

Incorporation of Variable Speed Limit (VSL)

$$v_{free}^* = v_{free} \cdot b_i(k)$$

VSL1

1 km

$$\rho_{cr}^* = \rho_{cr} \cdot A_i [1 - b_i(k)]$$

$$\alpha^* = \alpha \cdot [E_i - (E_i - 1) \cdot b_i (k)]$$

Incorporation of Ramp Metering (RM)

$$r_i^*(k) = c(k) \cdot r_i(k)$$

Location of incident

1 km

VSL6

1 km

$$= c(k) \cdot \min\left\{d_{ramp}(k) + \frac{\omega_{ramp}(k)}{T}, Q_{max,ramp}, Q_{max,ramp}\left(\frac{\rho}{\rho_{ramp}}\right)\right\}$$

$$\left\{\frac{\rho_{jam,i}-\rho_{i}(k)}{\rho_{jam,i}-\rho_{cr}(k)}\right\}$$

Default Speed Limit = 100 km/hr

1 km

8 km

Future plan

Regression analysis \rightarrow structure of FD

Model calibration	Link-specific parameters	Global parameters
	Free flow speed - v_{free}	Reaction time parameter - τ (hr)
	Critical/ jam density - ρ_{cr}	Anticipation parameter - $v (km^2/hr)$
	Shape parameter of fundamental diagram (FD) - α	The positive constant - κ (vpkpl)
	Mean μ and standard deviation σ of a stochastic flow influencing term $\xi_i^q \sim N(\mu, \sigma)$	
	Mean μ and standard deviation σ of a stochastic speed influencing term $\xi_i^{\nu} \sim N(\mu, \sigma)$	
Validation	22.03.2010	0

22.03.2019

Thanks for listening.

Shuyuan Xu

22.03.2019

Curtin University is a trademark of Curtin University of Technology CRICOS Provider Code 00301J