SBEnrc Project 2.33

New

Project Management Structures: Infrastructure Modelling (BIM) and Location (GIS)

Project Leader: Russell Kenley

SBEnrc 2.33 (Part 2): from COBie to CONie

Research Team

- Bill East
- Russell Kenley
- Toby Harfield

NRC (1983) A Report from the 1983 Workshop on Advanced Technology For Building Design and Engineering, National Academy Press, Washington, DC. **1984**

"much valuable data associated with the design, construction and operation of a facility are lost during its life span"

Open systems, standards, specifications development or problem solving

- A number of international organisations, that include industry, academia & government, use consensus during the development of globally accepted open standards and specifications
- This method of development is based on a long timeframe:
 - International Standards Organisation
 - buildingSMART
 - Open Geospatial Consortium
- To solve a problem: use a short time-frame approach
- Look to historical developments

History: How do we provide the information needed for facilities operations?

- What short time-frame approach solved this problem?
- Develop a specific tool for a specific purpose:
 -handover information that facilities operations can use
- Construction to Building Operations information exchange COBie
- Open source v1 developed in 18 months
- Software developers at COBie launch 2007
- Currently 30 asset management systems use COBie

Lyle has a problem: these are the different media used to handover building construction information

Lyle's problems multiply over time: different types of building information is in different formats & stored in different places

obsolete: remember floppy dics?

a neat & tidy library, but these manuals not available on-site

inaccessible because it is locked in away

duplicate systems for data: different data recorded by different people for different purposes; but for the same location in a building

SBEnrc 2.33 PSG 9Sep15 from CObie to CONie Presentation

There is no end to Lyle's woes: when he finds the document, it is not labelled or searchable or has a number of different specs so <u>he can't easily find what he needs</u>

Over the life of the facility, as technology continues to rapidly advance, eventually much information cannot be accessed

un-labelled documents

un-searchable scanned pdfs

inconsistent processes

You use inches: I use centimetres

BIM (ISO 16379) is not the answer for most facilities managers: too much data generated for most buildings

- important to define which piece of that information is important
- is information linked to the intended purpose
- sub-set of data is a model view
- buildingSMART working on how to manage all types of building information

Who creates the building information? Where does it come from?

Designers of all detailed drawings

Example of information/data for Fan

FAN SCHEDULE														
UNIT INC	LOCATION	$\widetilde{\mathcal{M}}$	NTEPLOCK WTH	THE Fail	uar. Res	III, SP.	desion Notor	SOLES		PONER		HAR, SOLID PORTH LEVEL	DRM	REWARKS
		ι ₍)					NALL3	Ι	VQ.T	PH	30	SHI COTIE BARE		
W-1.	20-05	9130	AHU-1	-	22	620	15000		8	3	60	8	EQ.T	SEE NOTE THIS SHEET
R#-2	20-05	8750	AHU-2	1	250	520	11000	-	480	3	60	82	BELT	SEE NOTE THIS SHEET
(Finite)	FF, BLOCK 18	715	AHU-1	2	880	225	570	-	120	1	60	75	BELT	
EF1-2	FF, BLOOK 28	88	AHU-1	- 2 -	775	155	250	-	120	1	60	75	BELT	
B1=3	er, 8.00x fe	1360	AHJ-1	94	53	25	22		8	eri)	60	78	BELT	8
F1-4	W, BLOOK 1E	70	AHJ-1	2	쯓	125	30		22	1	60	5	08(0	W/ SHED CONTROLLER
(F2-1	20-05	80	AHU-2	3	750	215	33		25	3	80	T_{ij}^{n}	RF T	•
872-2	20-05	11.30	2-(H)	-		250	ĺ,		ŝ	2	60	\overline{n}	BELT	8
62-3	20-05	270	4HU-2	3	160	325	570	=	120	1	60	16	EELT	
8-3	§-13	-60	THERMOSTIAT	4	27.5	25	2	13,1	120		60	-	DATC	
24	16-15A	50	THERMOSTIAT	4	25	95	8	13,2	120	_	62	-	Date	
87-5	- II - II	100	TATEOREM	4	225	93	82	13,2	12		60	-	DRICT	
07-6	16-20	100	TATEOMONT	4	22.5	95	62	13.2	120	1	8	-	DRECT	
8-7	16-31	- 50	THEREOSTAT	4	22.5	25	62	13.2	120		60	-	DIRECT	
97-1	30-05	3100	NERHOSTAT	5	65	125	750	23	480	3	60	-	DIRDCT	 INTERLOCK WITH SPACE SMOKE DRITICSTOP TO SMUT DOWN FAN

Example of information/data to be decomposed

				_	_					_	_					· ~						
						FAN	I SCI	HEDU	LE													
UNIT PRO	LOCATION	i.	WTERLOCK WTH	THPE Fan	MAK. RPM	EIT, S.P.	DESION	SOLES		PONER	1	MAR, SOLID POWER LEVEL	DRIVE	REMARKS								
							WHI15	-	VQLT	PH	CAC	34 OOTHE BAND										
RAF-1	20-05	ł	AHU-1	1	1050	620	15000	-	480	3	60	84	BELT	SEE NOTE THIS	SHELL							
RM-2 FF1=1	80-05 97. BLOCK 18	-	AHU-2	2	890	996	320	-	120	3	60	75	PELI PELI	SEE MORE INS	SHELL							
FF1-2	RF. BLOCK 2B		AHI-1	2	775	155	250	-	120	1	60	73	BELT									
E71=3	RY, BLOCK 1E		AHU-1	2	925	225	750	-	460	ż	60	78	BELT	*								
EF1-4	RF. BLOOK 1E		AHJ-1	2	1485	125	30	-	120	1	60	56	DIRECT	W/ SPEED COM	TROLLER							
EF2-1	20-05		AHU-2	3	750	215	990	-	208	3	60	73	BELT	•								
855-5	20-05		AHU-2	-3	615	250	750	-	480	3	60	77	BELT									
BF2-3	20-05		AHU-2	- 3	1650	325	370	=	120	1	60	76	BELT									
EF-3	16-15		THERMOSTAT	4	27.5	95	125	13,1	120	1	60	-	DIRECT									
37-4	1E-15A		THERMOSTAT		20.6	95	62	13,2	120	-	60	-	DINECT									
17-3	12-17	-	DEDUCTAT		20.0	80	92	13.2	1.00		60	-	DWLC1									
H-0 H-7	16-20		THEPHALISTAT	1	20.0	30	<u>62</u>	13.2	120	-	60	-	DIRECT									
SF-1	20-05		SBUOSTAT	5	45.5	125	250	23	480	3	60	-	DIRECT	· RITERLOCK WIT	, স	E.	COBie					
			AND AND	Ű	-		~~~	80			~		George .	DETICTION TO SHO	9.							
				A		omp	onei			lior	E E		111CIIN(<u>)</u>		,		ategory	heetName *	bow Name	Zalue e	
			1	Nam			ļ	d.	5	c	Spa		Des			6772	Design Motor	Requireme	Componen	Fan-EF1-1	370	w
			1524 Fa	an-EF:	1-1	Fan- Ro	oof Mou	unted T	ype 1	2R0	2	Centrifi	ugal Fan-	Roof Mounted		6773	Drive	Requireme	Componen	Fan-EF1-1	Belt	n/
			L525 Fa	an-EF	1-2	Fan- Ro	oof Mou	unted T	ype 2	3R0	1	Centrif	ugal Fan-	Roof Mounted		6774	Ext S.P.	Requireme	Componen	Fan- EF1-1	225	P
			1526 Fa	an- EF:	1-3	Fan- Ro	oof Mou	unted T	ype 3	2R0	2	Centrifu	ugal Fan-	Roof Mounted		0.770	E	Banalasa	C	F		
			1527 Fa	an-EF	1-4	Fan- Ro	oof Mou	unted T	vpe 4	2R0	2	Centrif	igal Fan-	Roof Mounted		0//5	Frequency	Requireme	Componen	ran-Er1-1	60	me
			1528 Fr	n- FF	2-1	Fan-In	Line Ty	me 1	100	200	15	Centrif	igal Fan-	In Line	1 1	6776	Interlock With	Requireme	Componen	Fan-EF1-1	AHU-1	n/
			1500 5	IN EE	2.2	Ean In	Line T	100 2		200	10	Contrife	ugal Ean	in Line		6777	Max Speed	Requireme	Componen	Fan-EF1-1	880	RP
			525 10	the Er	2-2	ran- m	Line ij	pe z		200	10	Centria	Igai ran-	in une		6778	Max Sound Power Level	Requireme	Componen	Fan. FF1-1	75	db
			1530 Fa	an-EF.	2-3 3	Fan- In	dewall	/pe 3 Type 2	_	2D0	5	Exhaust	Igal Fan-	in Line		6779	Phase	Requirem	Componen	Fan- EF1-1	1	n/
			1522 5	IN EE	5	Ean Si	dowall	Tune 2		101	7	Exhaust	Ean			6700	Remarks	Demula	Compose	Enn EEA A	-	
			1052 12	ni cr-	<i>c</i>	ran- 51	dewall	Type 3		1111	0	Exhaust	Fall			0780	Remotiks	Requirem	Componen	ran er1-1	n/a	TV
			1533 Fa	an EF-	D	Fan-Si	dewall	Type 3		162	U	Exhaust	Fan			6781	SONES	Requireme	Componen	Fan-EF1-1	n/a	n/
			1534 Fa	an EF-	7	Fan-Si	dewall	Type 3		1E2	1	Exhaust	Fan			6782	Total Air	Requireme	Componen	Fan-EF1-1	715	V
a a la l			1535 Fa	an SF-:	1	Fan-Si	dewall	Type 1		2D0	15	Supply	Fan			6783	Voltage	Requireme	Comoonen	Fan- FF1.1	120	V
nap	le		1536 F	an SE-	4	Fan- Si	dewall	Type 3		161	54	Exhaust	Fan			3103	Contract.	neepinein	samponen	Con- Chara		t i

SBEnrc 2.33 PSG 9Sep15 from CObie to CONie Presentation

12

Key designations to the related area depicted on the contract drawings

- Necessary information to construct the building
- Basic information provided by the contractor
- Useful for handover for facilities operations

1	RECORD OF DESIGN	NATED EQUIPMENT	AND MATERIALS	5 DATA	
Description	Specification Section	Manufacturer and Catalog, Model, and Serial Number	Composition and Size	Where Used	

1. 3D modelling data not necessary

2. installed equipment, warranty start, lag list:on the paper drawings

3. spreadsheet universally integrated

COBie validated 2 years ago Now published as part of US Information Exchange Standards

National BIM Standard - United States® an Initiative of the National Institute of Building Sciences buildingSWHTGliones*	
National BIM Standard - United States [®] Version 3	
4 Information Exchange Standards	
4.2 Construction Operation Building information exchange (COBie) – Version 2.4	
CONTENTS	
4.2.1 Scope	2
4.2.2. Normative References	17
4.2.3 Terms and definitions	22
4.2.4 Symbols and abbreviated terms	45
4.2.5 Business process documentation	47
4.2.6. Exchange requirement documentation	92
4.2.8 Conformance testing procedures	. 221
4.2.9 Implementation resources	.236
4.2.10 Revision plans	. 243
Bibliography	. 245
Table of Figures	. 248
Annex A – COBie Mapping Rules	. 252
Annex B – Life Cycle information exchange (LCie) for Product and Product Type data exchanges	, a

National BIM Standard – United States[®] Version 3 ©2015 National Institute of Building Sciences buildingSMART alliance[®]. All rights reserved

What is needed for a specification?

Ask the questions:

- what information is needed for building maintenance?
 - moving parts
- what information <u>isn't</u> needed?
 - almost everything else

Extract data that is needed from paper documents:

- put it into a technical information format
- create a specification by
- putting the information into a spreadsheet

Table	59 IFC	Coord	inate View Instances Excluded in COBie
IfcPre	oduct		
-»	-Ifc/	nnotat	ion
-»	IfcE	lement	
	-»	lfcBu	ildingElement
		-»	HeBeam
			-»
		-»	IfcBuildingElementProxy
		-»	lfcChimney
		-»	IfcColumn
			-»
		-»	IfcCovering
		-»	IfcCurtainWall
		-»	lfcDoor
			-» IfcDoorStandardCase
		-»	HeFooting
		-»	
		-»	IfePile
		-»	<u>-IfcPlate</u>
			-» <u>IfcPiateStandardCase</u>
		-»	-IfeRailing
		-»	<u>-IfcRamp</u>
		-»	_ifcRampFlight
		-»	<u>-IfcRoof</u>
			InconadingDevice
			- KeShbElementedCase
			- " KrStabenenteurose
		-"	-// <u>Hestabatangarduase</u>
		->>	lieStaieElight
		-»	-ifeWall
			-» IfcWallElementedCase
			-» IfeWallStandardCase
		-»	lfcWindow
			-» IfcWindowStandardCase
	-30	IfcDis	stributionElement
		-»	
			-» IfcActuator
			-» IfcAlarm
			-» IfcController
			-» IfcFlowInstrument
			-» IfcProtectiveDeviceTrippingUnit
			-» IfcSensor
			-» IfcUnitaryControlElement

Performance based specification for information delivery: COBie

We use the tried and true construction process:

- standard data format
 similar to the standard testing cylinder
- allowable information
 similar to concrete
- test data to see if it conforms similar to breaking the test sample

 performance testing specification part of COBie

similar to testing concrete

Specified data: 1. useable, 2. backward compatible 3. performance testable

people who established information make it available for others

techies transform information into a format that is easily usable

specification is available as an open resource

many people can use the information exchange in a variety of products

Column	Column Name	Unique Key Primary Compound		Foreign Key	Required	d Value		Allowed Values	
column	Column Name			roreign key	Reqd.	System	AsSpecified	Туре	Max. Len
A	Name	Х	-	-	х	-	-	AlphaNumeric	255
В	CreatedBy	-	-	Contact.Email	х	-	-	Contact.Email	255
С	CreatedOn	-	-	-	Х	-	-	ISO Date	19
D	Category	-	-	PickList.Category- Product	x	-	-	PickList.Category- Product	255
E	Description	-	-	-	х	-	-	AlphaNumeric	255
F	AssetType	-	-	PickList.AssetType	х	-	-	PickList.AssetType	255
G	Manufacturer	-	-	Contact.Email	х	-	-	Contact.Email	255
н	ModelNumber	-	-	-	x	-	-	AlphaNumeric	255
L	WarrantyGuarantorParts	-	-	Contact.Email	х	-	-	Contact.Email	255
J	WarrantyDurationParts	-	-	-	х	-	-	Numeric	Double
К	WarrantyGuarantorLabor	-	-	Contact.Email	х	-	-	Contact.Email	255
L	WarrantyDurationLabor	-	-	-	х	-	-	Numeric	Double
м	WarrantyDurationUnit	-	-	PickList.DurationUnit	х	-	-	PickList.DurationUnit	255
N	ExternalSystem	-	-	Creating System Name	-	х	-	AlphaNumeric	255
0	ExternalObject	-	-	Creating System Object	-	Х	-	AlphaNumeric	255
P	Externalldentifier	-	-	Creating System ID	-	х	-	AlphaNumeric	255
Q	ReplacementCost	-	-	-	-	-	х	Numeric	Double
R	ExpectedLife	-	-	-	-	-	x	Numeric	Double
S	DurationUnit	-	-	PickList.DurationUnit	-	-	x	PickList.DurationUnit	255
т	WarrantyDescription	-	-	-	-	-	x	AlphaNumeric	255
U	NominalLength	-	-	-	Х	-	-	Numeric	Double
V	NominalWidth	-	-	-	X	-	-	Numeric	Double
W	NominalHeight	-	-	-	X	-	-	Numeric	Double
Х	ModelReference	-	-	-	-	-	X	AlphaNumeric	255
Y	Shape	-	-	-	-	-	X	AlphaNumeric	255
Z	Size	-	-	-	-	-	X	AlphaNumeric	255
AA	Color	-	-	-	-	-	X	AlphaNumeric	255
AB	Finish	-	-	-	-	-	X	AlphaNumeric	255
AC	Grade	-	-	-	-	-	X	AlphaNumeric	255
AD	Material	-	-	-	-	-	X	AlphaNumeric	255

Construction to Operations Network information exchange CONie

- Can the lessons learned from COBie be used for SBEnrc project 2.33?
- Research Question:

Can a "COBie for infrastructure" be created?

- We could call it CONie (Construction to Operations Network information exchange)
- What would a CONie look like?
- What specific information and data are needed for road network handover?

General comments about data for road networks

- Without a central authoritative set of infrastructure network information, public and private interests keep multiple, overlapping datasets for Asset Management
- Upkeep of these datasets (maintenance, operations, GIS, BIM, etc.) is typically not tied to project phases
- Over time, information content diverges, leading to higher costs and inability to share needed data
- Ability to extract, use, and share basic asset information often tied directly to specific proprietary software
- Networks focus almost exclusively on format <u>not</u> process or content

Identified information sources for road network asset management and maintenance

Information Sources

Engineering Data Engineering Geometry Network Segments Network Geometry Network Topology **Easement Information** Segment Condition Asset Inventory Work Templates Safety Conditions Sensor Feedback **Operational Conditions** External Condition **Political Boundaries**

21

Structuring information for road networks by identified information users

			Information	Users		
Information	Project	Maintenance	Asset	Operation	Public Use	Policy
Sources	Management	Management	Management	Management		Research
Engineering Data						
Engineering Geometry						
Network Segments						
Network Geometry						
Network Topology						
Easement Information						
Segment Condition						
Asset Inventory						
Work Templates						
Safety Conditions						
Sensor Feedback						
Operational Conditions						
External Condition						
Political Boundaries						

Road network data:

1. how do we get data from the people who create and use it?

2. what is their relationship to this data?

			Information	Users		
Information	Project	Maintenance	Asset	Operation	Public Use	Policy
Sources	Management	Management	Management	Management		Research
Engineering Data	Create	Reference	-	-	-	-
Engineering Geometry	Create	Reference	-	-	-	-
Network Segments	Create	Update	Read	Read	Read	Read
Network Geometry	Create	Update	Read	Read	Read	Read
Network Topology	Create	Update	Read	Read	Read	Read
Easement Information	Read	Read	-	Create	-	-
Segment Condition	Create	Update	Read	Update	Read	Read
Asset Inventory	Create	Update	Read	Read	-	-
Work Templates	-	Create	Create	-	-	-
Safety Conditions	Read	Read	-	Create	Read	-
Sensor Feedback	-	-	-	Read	-	-
Operational Conditions	-	Read	-	Create	Read	-
External Condition	Read	Read	-	Read	Read	-
Political Boundaries	Read	-	Read	Read	Read	Read

Appropriate specification standards for CONie

- •authoritative highway network information repository
- •services based on open engineering standards
- forward-compatible standards that can be adopted today
- •open systems for constituents levels of access provided by secure, cloud-based services

Outline for a road network data model

25

SBEnrc 2.33 PSG 9Sep15 from CObie to CONie Presentation

Suggested location system for horizontal infrastructure

- CityGML is an international OGC standard and can be used free of charge
- <u>OGC CityGML</u> is an open data model and XML-based format for the storage and exchange of semantic 3D city models
- an application schema for the <u>Geography Markup Language</u> <u>version 3.1.1 (GML3)</u>, the extendible international standard for spatial data exchange issued by the Open Geospatial Consortium (OGC) and the ISO TC211
- aim of CityGML is to reach a common definition of the basic entities, attributes, and relations of a 3D city model

CONie: next steps

- 1. Look at specified requirements in contracts for specifications in a format that is usable
- 2. Create samples with real data (spreadsheets)
- 3. Find software to check the data

