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ABSTRACT

In Australia, the government spending on public buildings’ energy and water consumption is considerable;
however the building energy and water retrofit market potential has been diminished by a number of barriers,
especially financial. In contrast, in other advanced economies there are several reported financing strategies that
have been shown to accelerate retrofit projects implementation. In this study, a coupled Bayesian Network —
System Dynamics model was developed with the core aim to assess the likely influence of those novel financing
options and procurement procedures on public building retrofit outcomes scenarios in the Australian context. A
particular case-study focusing on Australian public hospitals was showcased as an example in this paper.
Stakeholder engagement was utilised to estimate likely preferences and to conceptualise causal relationships of
model parameters. The scenario modelling showed that a revolving loan fund supporting an energy performance
contracting procurement procedure was preferred. Subsequently, the specific features of this preferred frame-
work were optimised to yield the greatest number of viable retrofit projects over the long term. The results
indicated that such a financing scheme would lead to substantial abatement of energy and water consumption, as
well as carbon emissions. The strategic scenario analysis approach developed herein provides evidence-based
support to policy-makers advocating novel financing and procurement models for addressing a government’s
sustainability agenda in a financially responsible and net-positive manner.

1. Introduction

1.1. Contextual background

water and energy consumption; the potential savings which could be
accrued through a widespread installation of water and energy efficient
devices would be significant; however a number of implementation
barriers, even more impeding than in the residential sector, currently

Government buildings are responsible for a large proportion of hinder the establishment of a robust, effective retrofitting industry.
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Such barriers were previously identified [1,2], and include the lack of
initial capital investment [3] that is essential to cover the retrofit pro-
jects” high upfront cost [4]. This underlines the importance of having
financial and procurement mechanisms in place in order to facilitate
access to the capital needed to fund the project. Successful examples
showcased in the United States, United Kingdom and Germany make
use of innovative approaches such as revolving loan funds (RLF) and
energy service companies (ESCOs) to facilitate the procurement pro-
cess, to name a few [1]. What is evident from the reported international
case studies is that each country context is very different and it is im-
portant to be able to model and simulate the effects of such policies in a
different place (country) based on local technological, climate, social,
economic and political factors. Hence the purpose of this study was to
simulate the costs and benefits of the introduction of a number of ac-
cessible financial mechanisms and procurement models for government
building water and energy efficiency retrofit projects in Australia.

The forecasting model would have to go beyond simulating the
payback period for energy and water saving alternatives for a certain
building and portfolio of buildings since the aforementioned financial
and procurement barriers often block the commencement of retrofit
projects in the government sector. Therefore, the model must be able to
integrate traditional technical and economic indicators with less tan-
gible financial, political and procurement alternatives in order to fully
understand the likely take-up of retrofit projects over time for various
proposed strategies. Additionally, the forecasting model needs to si-
mulate the best decision for each individual building, while con-
currently optimising the best funding scheme at a national level con-
sidering the overall expected retrofitting uptake. Importantly, the
modelling framework will have to holistically account for all the
challenging aspects of the water-energy-climate nexus involved in such
a system, so that all the costs and benefits are comprehensively quan-
tified, since typically water efficiency and the water-energy nexus are
overlooked in policy-making [1,5]. Fortunately, modelling techniques
are available to handle complex scenario forecasting problems with
uncertainty and time-based parameter interdependency, including
general data-driven models, water/energy simulation models, Bayesian
Networks, Agent-Based Models, System Dynamic models, or combina-
tions of them.

1.2. Previous water and energy-efficiency models

Data-driven models have been extensively applied in the energy
sector for a range of purposes including costs reduction and energy
optimisation, provided that enough data is available. As an example,
Rieger, Thummert [6], based on a comprehensive dataset including
more than 200 German households, developed a data-driven model and
ran several simulations in order to estimate the potential cost-savings of
different demand-response strategies, concluding that a two-part tariff
(i.e. with a consumption-based component) would lead to at least 5%
cost saving and a 14% reduction in peak demand. Fang and Lahdelma
[7] also combined two data-driven models (namely, multiple linear
regression and SARIMA) to predict district heat demand based on both
weather and social input factors, in order to optimise the operations
planning of district heating systems. Also in this case, a large amount of
historical data is required. Walter and Sohn [8] used a database con-
taining data for energy use, building features and equipment for almost
900,000 US buildings, to develop a multivariate regression model able
to estimate the likely energy savings due to a particular energy retrofit.
Regression analysis was also used in Lam, Hui [9] to quantify the im-
portance of a number of input parameters in affecting energy con-
sumption in Hong Kong high-rise buildings, and such models could
potentially be used to estimate the expected change in consumption
based on a retrofit (i.e. variations in some of the input parameters’
value); a survey of Hong Kong commercial buildings was the foundation
to develop the model. A very similar approach was subsequently used to
predict building energy use in different Chinese climate zones [10]. A
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difference of less than 10% was found between statistical and energy
model prediction accuracy. A more complex model, based on genetic
algorithms was developed by Siddharth, Ramakrishna [11]; this model
was able to identify critical input factors for building energy con-
sumption, and could estimate energy and monetary savings resulting
from a number of energy conservation measures. Several different en-
ergy-efficient options can be also assessed for a specific building
through multi-objective optimisation, such as in Diakaki, Grigoroudis
[12]. Another example of regression modelling is given by Guerra
Santin, Itard [13], who used data for 15,000 homes in the Netherlands
to understand the importance of, in particular, occupants behaviour in
affecting energy use for heating, concluding it does partially influence
energy consumption. Although related to water heating too, this study
was focused on energy consumption while water efficiency is not con-
sidered. As a matter of fact, one of the main current gaps in the retro-
fitting industry is the lack of awareness, and interest, in water retro-
fitting [1] and of the potential combined savings due to the nexus
between water and energy. As a result, modelling of water-efficient
technologies is not as common as for energy retrofits.

In the Australian context, Beal, Bertone [14] modelled the estimated
water, and energy, savings of water-efficiency devices for residential
households, such as tap aerators and efficient shower heads. Talebpour,
Sahin [15] investigated the performance of residential rain water tanks
with an empirical approach based on water, energy, socio-economic
and stock inventory data for a number of houses in South-East
Queensland. Kenway, Scheidegger [16] developed a static mathema-
tical model to simulate household water use and analyse different
scenarios incorporating technical and behavioural changes, with the
scenarios combining both strategies predicting much larger water-re-
lated energy savings than technical improvements alone. Vieira,
Humphrys [17] used the software EnergyPlus to understand and
quantify the effects of site-specific features on the performance on do-
mestic water heating systems. Gurung, Stewart [18] analysed and
modelled a number of water savings technologies and quantified the
mutual benefits for householders and water utilities.

More detailed, building-specific computer models typically would
not allow for a large scale feasibility assessment of a retrofitting policy,
however to overcome this it is possible to follow the methodology
proposed by Dascalaki and Santamouris [19]. They ran an energy
model on ten buildings only, however, since each of these was re-
presentative of a particular office building type, it can be assumed that
the model would yield similar outputs for other buildings within the
same category; thus the outcomes were extrapolated to estimate the
energy saving potential of a number of retrofitting actions for the whole
office stock. Another study focusing on a particular category of public
buildings was undertaken in Beusker, Stoy [20], where data for over
100 schools and sport facilities in Germany were used as input for a
regression model able to estimate energy consumption for heating. Si-
milarly to Dascalaki and Santamouris [19], energy models were used in
Saari, Kalamees [21] to estimate the financial viability of different
options (e.g. solar collectors, heat pumps) for new detached houses in
Finland, providing the payback period as output.

In terms of financial modelling, in their integrated retrofitting op-
timisation tool Rysanek and Choudhary [22] incorporated a cost and
savings analysis using net present value, also accounting for the un-
certainty associated with factors such as engineering performance and
energy price. Interestingly, other studies found that the energy savings
for solar retrofitting options are typically overestimated [23]. A similar
approach, using NPV to find the optimal retrofitting option and ac-
counting for uncertainty in energy price, was used in Kumbaroglu and
Madlener [24]. An “augmented” NPV method, using the capital asset
pricing model, is instead proposed in Menassa [25], in order to allow
the decision maker to assess and prioritise different retrofitting options
over time.

Based on the available literature herein discussed, there are a
number of gaps and limitations which need to be addressed. It can be
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noticed, first of all, that there are no studies that could quantify both
the potential water and energy savings for specific technologies, as well
as incorporate their financial and procurement viability at a national
scale. This is due to limitations of the most common modelling ap-
proaches. The most typically deployed models are often deterministic/
mathematical models that can simulate energy and/or water use of a
specific building; this implies that such calculations are difficult to be
performed over a national scale by considering the full building stock.
Empirical models similarly, require a large amount of data. Both these
approaches, additionally, struggle to handle or properly quantify un-
certainty, as well as to deal with missing and/or qualitative data (e.g.
householder behaviour). Finally, as already mentioned, the financial
component is often modelled separately. However, there are modelling
approaches which can help address such limitations. Coupling Bayesian
Networks (BN) with System Dynamics (SD) modelling methodologies
can reveal richer findings in situations where it is necessary to link
strategic parameters related to policy (e.g. financing model, procure-
ment, etc.) with the more practical technical and economic modelling
aspects. Benefits relate to handling of uncertainty, probability, pre-
ferences, and time-dependent interactions, among others, as detailed in
the next sections.

1.3. Benefits of a coupled Bayesian Network — System Dynamics model

A modelling methodology which can potentially overcome data
limitation, as well as include qualitative input data and uncertainty in
the overall assessment, is given by BN, acknowledged as being one of
the most effective and useful modelling frameworks in the field of
probabilistic knowledge representation and reasoning [26]. BN allows
incorporating not only real numerical data, but also experts’ qualitative
inputs; this is crucial for retrofitting-related issues, since it has been
shown that unrecorded socio-economic factors such as tenants’ habits
play a major role in affecting the potential of retrofitting technologies,
and community engagement as well as policy incentives are deemed
essential for triggering energy-saving behaviours [27]. BN also ex-
plicitly deals with uncertainty; considering that the optimisation of
retrofitting options is a highly multidisciplinary and uncertain model-
ling problem [22], BN provides a suitable means to overcome these
complications. Additionally, the computational time of a BN simulation
is considerably shorter than for some process-based models [28] due to
the conditional independence attribute of the nodes, meaning that the
value (state) of a variable (node) is computed based on the state of
parents nodes only, thus making the calculations simpler and faster
[29].

An example of BN application in the field of energy efficiency is
given by Cai, Liu [26] who combined two different Bayesian Networks
in order to predict the probability of failure of ground-source heat
pumps, for improved diagnostics. Similarly, in order to deal with large
scale assessment of feasibility of building retrofit options, Heo,
Choudhary [30] used relatively simple and quick normative energy
models coupled with a Bayesian calibration approach in order to ac-
count for the uncertainty of a number of parameters and thus allowing
to explicitly assess the risks associated with different retrofit options.

SD on the other hand is a modelling methodology which enables to
understand and model complex systems in order to improve policy- and
decision-making [31]; SD has been extensively applied for several
decades to guide policy-makers in several fields including the water and
energy sectors [32,33]. Although it cannot explicitly deal with un-
certainty such as BN, it can instead model nonlinear system behaviours
over time including feedback loops. Combining BN and SD has been
previously proposed by the authors as part of the “ARID” (Accessible,
Robust, Integrated and Dynamic) framework [34] and it proved to be
beneficial, as it allows for combining the advantages of the two separate
modelling approaches and at the same time neutralising the respective
limitations. Such hybrid BN-SD approach has been successfully applied
by the authors in water-related projects [35].
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1.4. Research aim and objectives

The overarching aim of this study was to identify the effects of
different financing mechanisms on the uptake of water and energy
retrofitting projects for Australian public buildings.

Firstly, given the aforementioned benefits and previous applications
of BN, it was decided to build a BN which can estimate the willingness
to retrofit of a given Australian public building, based on its current
efficiency, location, and other contextual factors such as financial me-
chanisms in place (if any). It would also make use of available water
and energy data, as well as the findings of the first part of this project
[1] in terms of current barriers and best examples for the retrofitting
industry. Although it is not possible to accurately model energy and
water use for each individual public building since they differ from each
other, such buildings can be grouped together based on a number of
common features; in such a way, it is possible to investigate the be-
haviour of each building group and identify optimal retrofitting actions
for each of these building types [19].

Secondly, a System Dynamics (SD) model was developed in order to
(1) optimise the features (e.g. loan duration, initial funding amount,
interest rates) of the most cost-effective financing schemes; and (2)
estimate, over the long-term, the expected monetary (in terms of water
and energy use reduction) and carbon savings resulting from the po-
tential implementation of such financial schemes. Outputs of the BNs
(e.g. number of buildings per unit of time willing to retrofit) were fed to
the SD as part of the ARID framework in order to take advantage of
respective benefits of these two separate models.

The combined outputs of such hybrid BN-SD model were used for
scenario analysis and to quantify water, energy and carbon savings
originating from different retrofit options and financing schemes con-
sidered.

The following sections describe the data collection and analysis
activities, the development of the two models, and the discussion of the
results.

2. Materials and methods
2.1. Data collection

Data for public buildings location, size, and energy consumption
were collected from a range of publicly available sources [36-40]. In
particular, the data presented in one of these documents [40] were in
turn collected from other several studies, statistically analysed and
validated. Although the reported data are predominately based on a
larger category of commercial buildings, it is possible to extract data for
the public category only. For instance, the energy use calculated for
hospitals can be broken down into private and public categories based
on information available online [38]. As described in a later section, it
was possible to notice that hospitals are responsible for the larger
portion of energy consumption amongst public building categories,
hence the modelling efforts focused on this particular type of building
in order to demonstrate the proposed modelling approach. However the
modelling framework can be easily re-applied to other less water and
energy intensive public building categories if required.

Regarding water consumption, a limited amount of data was
available. For instance, some general water consumption and water
intensity data was available for Victorian hospitals through the Victoria
State Government website [41]. Trends were evident in the water data
such as that metropolitan hospitals tend to be more water efficient with
an average consumption of 1.5 kL/m? per annum, compared to 1.7 kL/
m? per annum for regional hospitals. Moreover, there was a trend of
reduced water consumption in hospitals (up to 30%) in the last
10 years. Finally, from a number of different sources retrieved it was
determined that toilet flushing was the highest water use in public
buildings (up to 50%), while taps, showers and toilets combined to-
gether accounted for up to 80% of the total water use [42].
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Fig. 1. BN model structure for estimation of “willingness to retrofit”.

2.2. Bayesian Network development

Following the identification of the category of public buildings re-
sponsible for the highest energy consumption (i.e. hospitals), a BN
model was developed in order to numerically quantify the willingness
to retrofit a given hospital based on scenarios of:

. Financial mechanism in place (None, RLF, Environmental upgrade
agreements, On-bill financing, Green depreciation)

. Energy performance contractors (Yes/No)

. Location (State, Metropolitan/Regional)

. Current implementation rate (High/Low)

. Retrofit option (Energy: Solar PV, LED lights; Water: Taps aerators)

a b~ wnN

For the purpose of demonstrating the application of the modelling
approach, only three retrofitting options were considered in this study.
They were selected based on potential savings that they can create,
market accessibility, and modelling simplicity. Solar photovoltaic (PV)
installation is one of the most common and viable retrofitting options in
a country like Australia with high solar irradiation levels [43]. It is a
retrofit option that does not deal with “efficiency” per se (i.e. it does not
directly imply a reduction in water or energy use), but it is responsible
for on-site renewable energy generation and in turn reduced demand
for non-renewable energy to be purchased. The second retrofit option
was a lightning upgrade since it is well recognised as a low-cost, effi-
cient way to reduce energy costs as demonstrated by previous studies
[23]. Regarding water-efficient devices, the study focuses on well re-
cognised least-cost demand management solutions such as tap aerators
and shower heads. While reducing shower consumption has a lower
impact in public buildings when compared to residential buildings, tap
aerators would still provide a very cost-effective means to considerably
reduce water and water-related energy consumption [14]. Importantly,
the BN was designed to cater for diverse scenarios of different climatic
zones within states and territories of Australia; climate has an influence
on the building characteristics, the energy behaviour of buildings [19],
and the efficiency of considered retrofitting options (e.g. PV panels).

Regarding financial mechanisms, the research team relied on the
results of the first stage of this project, reported in Bertone, Sahin [1].
Financial incentives have previously been reported as being important
for retrofit projects [44], though this problem has a different research

focus and approach. The BN model includes a variable that considers
the innovation diffusion rate according to Rogers [45] theory, which
suggests that the uptake of a new technology relies not only on external
factors (e.g. promotion), but also on internal ones (e.g. current number
of adopters). Other similar approaches have been proposed to simulate
the uptake of new water/energy technologies, including agent-based
modelling [46] and cellar automata-based models (e.g. Kandiah, Ber-
glund [47]).

As previously mentioned, modelling such system is a challenging
task since the willingness to retrofit would be dependent not only on
numerically quantifiable technical aspects (e.g. water/energy savings,
payback period, etc.), but also contextual factors such as available fi-
nancing mechanisms or building location. Quantifying financial and
implementation attractiveness must be performed with a probabilistic
approach using experts’ judgement whenever data is not collectable,
and integrated with the technical calculations. Given these considera-
tions and previously mentioned benefits, the research team decided to
develop a BN since this type of model would satisfy all the modelling
requirements and overcome the difficulties herein described.

BNs are a type of statistical, probabilistic, acyclical graphical model
where variables (called nodes) are connected to each other through
causal links. Each node has a number of states (e.g. high/low); with a
“conditional probability” assigned to it, which can be derived from
different sources (e.g. empirical data, experts’ inputs, or outputs of
other models). Such probability is called conditional because its value is
dependent on the values of the parents’ nodes. All the required condi-
tional probabilities for the states of a certain node can be summarised
with a conditional probability table (CPT). New information is entered
into the BN by substituting the a priori belief with observations or
scenarios values for the desired nodes [48]. This mechanism of com-
puting the posterior distribution of a variable when new knowledge is
added is called probabilistic inference. Basically, a BN provides a way to
automatically apply the Bayes’ theorem when complex systems are to
be modelled. Through the Bayes theorem, in addition, BN allows for a
top-down (“forward inference” - scenario analysis based on pre-set
input conditions), as well as a bottom-up (“backwards reasoning” —
estimating the inputs leading to a pre-specified output), analysis. Es-
sentially, by building a BN model, it is possible to integrate numerical
calculations when data are available (e.g. estimated energy savings
based on current consumption and retrofit option) with qualitative
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information when data are not available (e.g. predicted retrofit uptake
based on available financial mechanism besides predicted savings).

Fig. 1 illustrates the structure of the BN model developed for hos-
pital buildings in the locational context of Australia. The model was
developed using the software Netica 5.18 32 bit from Norsys Software
Corp. The left-hand side of the model contains the nodes that pre-
dominately relied on numerical calculations. Predicted water savings
for tap aerators were calculated in the light blue (bottom left corner)
part of the model. The related energy savings are calculated through the
dark orange variables (i.e. second column from the left). The same path
is followed by the considered energy-efficient retrofits, namely LED
lights and solar PV. For solar PV, additional model input variables are
necessary, such as roof area (assumed proportional to the total hospital
area) and location (annual solar radiation). These calculations are
performed through the yellow variables (top, central) part of the BN.
Such numerical calculations are performed through equations, based on
current water and energy consumption of hospitals according to the
collected data, as well as estimates of water and energy savings
achievable through the considered retrofitting technologies based on
available literature and basic engineering calculations. All these equa-
tions are converted to probability distributions through a Monte Carlo
approach. For instance, based on the distribution of the hospital size
(see Fig. 4), a number of simulations (i.e. 100,000) are run where a
random value for the hospital area is selected every time, leading to a
different quantification of savings. However, as these values will be
proportional to what is dictated by the frequency distribution of Fig. 4,
the resulting probability distribution of the savings will be realistic and
reflecting the overall hospitals’ characteristics estimated from the
available data.

The final output of the technical analysis calculations part of the
model is the monetary payback period. Based on the calculated water
and energy savings (in case of solar panels, we referred to “purchased”
energy savings since, as explained previously, they do not lead to a
reduction in consumption, but simply to an increase in produced energy
which does not have to be purchased), and on retrofit installation costs,
the payback period and thus the technical attractiveness was calculated.
Greenhouse gas emission reductions can be calculated based on the
emissions per kWh [14].

The right hand-side of the BN model, on the other hand, is pre-
dominantly qualitative, and it is where financial and implementation
attractiveness was estimated. Firstly, based on the review completed in
the first stage of this project [1], a number of variables which, ac-
cording to the research team, could considerably affect the attractive-
ness of a retrofit project, were listed and logically connected together
based on cause-effect relationships. Hence, for instance, each financing
mechanism would affect the variables upfront cost, the interest rates,
and loan duration. In addition, other important variables were identi-
fied as being: the procurement complexity, the presence of energy (and
water) performance contractors, the presence of related expertise
within the building/organisation, the building age and value, and the
current implementation rate.

As stressed before, no numerical equations can be retrieved to fill in
the CPTs of these variables and thus quantify the relationships between
parent and child nodes for this part of the BN. Hence these must be
qualitatively assessed. The importance of each factor was therefore
weighed based on literature, the research team judgement, and industry
partners’ opinion. In particular, two meetings were organised; one in
Brisbane with Queensland Government stakeholders, and one in Perth
with Western Australian Government stakeholders.

In complex systems, stakeholders must be involved and consulted to
implement initiatives that could affect their interests. Bringing together
the key stakeholders is a way of building consensus and has multiple
benefits such as: (1) avoiding early-stage conflicts; (2) pushing the
process forward against delays; and (3) promoting initiatives which
share decision-making responsibility. Therefore, engaging stakeholders
throughout the modelling process represents a minor expenditure of
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resources when compared with the costs of poor performance, or even
disaster that typically follows in the wake of failing to consult key
stakeholders, and to retrieve their interests and their information [49].

Continuous stakeholder engagement has been previously used by
the authors in projects involving BN or SD [50,51] and it is a crucial
component of the proposed ARID framework to ensure the development
of a robust and reliable model. These meetings were used to elicit ex-
pert data (to complement the preliminary input weighting) and to get
feedback on the model structure. The model was then refined accord-
ingly; CPTs for these nodes were created based on the simulation re-
sults, existing data, and the weight of different input factors provided
by the consulted industry and government experts. The model was then
validated by running several scenarios and checking for inconsistencies
or illogical behaviours.

2.3. System Dynamics model development

BN modelling established a preference for a RLF financial arrange-
ment, as described in the Results section. Subsequently, based on such
finding, a SD model was developed to determine the retrofit rate for
hospital buildings based on the RLF initial capacity, interest rates, and
duration of the available loan. For each of the scenarios considered, the
following outputs were calculated: (1) quarterly and total monetary
savings from avoided water and energy consumption; (2) quarterly and
total avoided carbon emissions; (3) number of hospitals which have
completed a retrofit project; and (4) evolving RLF budget. The model
was firstly developed in-house by the research team but was later re-
fined after stakeholders’ consultation.

The structure of the SD model is illustrated in Fig. 2. The software
used for its development was Vensim DSS 6.3 Double Precision, from
the Ventana Simulation Environment. The model starts by considering
the number of eligible hospitals and the number of hospitals per quarter
willing to retrofit. This is dependent on the BN output parameter
“willingness to retrofit”, which is dynamically influenced by other para-
meters of the SD model, such as interest rates, loan duration, and the
current hospital retrofit implementation rate. The willingness to retrofit,
as well as other BN output variables (e.g. cost and savings of the retrofit
project) also depends on the retrofit option considered, as illustrated in
Fig. 2. Hence, a SD model was developed which can interactively be
adjusted in order to assess different scenarios; in particular: one con-
sidering the RLF scheme being set up for solar PV retrofits only, and
another one for the LED lights + tap aerators retrofit scenario. A basic
step-by-step procedure on how to deploy such two interconnected
models would be as follows:

1. Open BN and select background conditions; e.g. (a) a specific state
or the whole Australia; (b) the retrofit option to be considered; (c)
the size of hospitals to be considered; etc.

. BN output: willingness to retrofit of a given hospital, and expected
average energy and water savings;

. Open SD and set up background conditions used in the BN (e.g.
hospital size);

. Enter BN outputs in SD (e.g. willingness to retrofit, costs and sav-
ings);

. Optimise the RLF features based on SD outputs.

Based on certain input conditions and BN prediction, a number of
hospitals would decide, every quarter, to retrofit; hence, they would
apply for a loan from the RLF scheme, based on the estimated project
cost (calculated from the BN model). However, the RLF budget will
allow for only a limited number of loans per quarter to be approved.
Although the RLF budget is going to increase over the long term due to
the loan repayments (which are higher than the lent amount due to
interest), the RLF initial capital would soon deplete because the loan
repayments will slowly increase in number, but will be limited at the
very start. Hence, only a portion of the interested hospitals will have a
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Fig. 2. SD model for revolving loan fund optimisation for retrofit projects.
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retrofitting loan approved in any given quarter, and these could be
selected on a case-by-case base according to the savings potential. It
could be also possible however, to spread the awarded RLF budget over
a longer time or to “top up” such amount after a number of years, at
times when it is momentarily almost depleted. These scenarios could be
explored through the developed SD: the interactive environment in
Vensim in fact allows for dynamically adjusting the RLF features by
instantaneously check how a change in one of the inputs (e.g. RLF
budget) affects the outputs (e.g. number of retrofitted hospitals over
time). Following retrofit project approval, a designated project im-
plementation period has been allocated before the operational phase of
the retrofit projects commences and water/energy consumption is re-
duced each year. Another temporal factor considered by the SD model
is the average life of a retrofit project. Any hospital reaching the end of
the life of the installed retrofit will go back into the pool of “hospitals to
be retrofitted”.

Additionally, the bottom part of the model calculates, based on both
BN and upper SD model outputs, the savings achieved in terms of
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monetary costs, carbon emission reductions, and water and energy
savings. Theoretical performance parameters have been reduced to
account for practical issues such as poor installation or maintenance
and environmental factors (e.g. dust/shade on PV panels).

The model can also be run considering four different hospital size
categories, namely:

1. Small (< 5000 m?): 464 hospitals;

2. Small-to-medium (between 5000 m? and 10,000 m?): 252 hospitals;

. Medium-to-large (between 10,000 m? and 20,000 m?): 133 hospi-
tals;

. Large (> 20,000 m?): 477 hospitals.

These four categories account for different average project costs
associated with the size of the retrofit project for a particular hospital
and allow for the assessment of alternative funding amounts/mechan-
isms for these different sized hospitals.

3. Results and discussion
3.1. Data analysis results

In Fig. 3, it is possible to observe the estimated total annual energy
consumption for different categories of buildings. It can be noticed how
hospitals were responsible for more than half of the total energy con-
sumption of these building categories, accounting for a total of 22.1 PJ.
Universities and schools follow with, respectively, 9.9 PJ and 8 PJ.
Technical And Further Education (TAFE) and Vocational Education and
Training (VET) buildings accounted for a total of 2.7 PJ. Given these
figures, the research team decided to focus on hospitals only.

In Fig. 4, the frequency distribution of the size of the Australian
hospitals is represented. It can be noticed how more than a third of
them has a total area lower than 5000 m?2, and a combined total of over
70% has a total area lower than 20,000 m?. However, there are also
some outliers, with approximately 5% of the hospitals having an area
higher than 90,000 m>.

Fig. 5 illustrates the energy efficiency of hospitals based on their
location. Generally, hospitals in metropolitan areas have higher energy
efficiency. This might reflect the fact that the implementation of new
technologies may be easier and more accessible in these areas rather
than in remote regional areas. This factor must be considered in the
modelling framework. Overall, the least energy-efficient location is
regional Norther Territory (NT) with an annual energy intensity of over
2000 MJ/m?, while Hobart has the most energy efficient hospitals, with
an average annual consumption of 1322 MJ/m? — i.e. 36% less than
regional NT. Sydney, Melbourne and Brisbane hospitals have on an
average a similar efficiency of about 1500 MJ/m>.

In Fig. 6, a breakdown of the type of energy used by Australian

hospitals is presented. It can be seen how electricity (10.9 PJ) and
natural gas (10.5 PJ) are the two types of energy sources that account,
almost evenly, for the vast majority of energy consumption in hospitals.
It is important to underline how in Australia only 13% of the generated
electricity comes from renewable sources [52].

Figs. 7 and 8 also show a breakdown of the electricity and gas end-
uses in hospitals. Heating, Ventilation and Air Conditioning (HVAC)
systems account for a large portion of the energy use; similarly, space
heating is also the main end-use for gas. Interestingly, lighting also
accounts for a considerable 17% of the electricity use, equivalent to
over 1.8 annual PJ. Given the relatively low initial implementation
costs of a number of lightning retrofit options when compared to deep
retrofits such HVAC systems, this end-use has a lot of potential for
energy efficiency optimisation through retrofitting. Finally, a con-
siderable amount of energy (12% of natural gas and 2% of electricity) is
used for heating water; the importance of considering the water-energy
nexus, and water retrofit measures in order to simultaneously reduce
energy use, is evident.

3.2. Bayesian Network modelling results and discussion

The willingness to retrofit (Fig. 9), calculated with the BN is re-
ported for a number of financial option scenarios, for the two retrofit
options: (1) the installation of solar PV panels (blue! bars); and (2) a
combination of LED lights and taps aerators (red bars). Fig. 9 represents
an example of a few of the various scenarios that can be assessed
through the developed BN.

Expectedly, if no particular financing mechanism is in place which
can support the public building owner/manager in overcoming fi-
nancial barriers, the willingness to retrofit is extremely low despite a
potentially high monetary rate of return from the retrofit project. If a
green depreciation or on-bill financing scheme is available, helping to
reduce the high upfront costs, the willingness to retrofit increases to
meagre 2%. However, RLF and Environmental Upgrade Agreements
(EnvUpAgr) are the two schemes leading to the highest rates of retrofit
willingness. These modelling results confirm qualitative findings in a
recent review paper by the authors [1]. In particular, if a RLF is com-
bined with a high current implementation rate (High Impl) and also the
presence of energy performance contracts (EPC) which transfer long-
term savings risks to contractors, then the willingness increases to 16%
for solar PV and 30% for the combination of LED lights and tap aera-
tors. Such a big difference between the two retrofit options is justified
by a higher technical attractiveness for the latter one (i.e. LED lights
and tap aerators have a rapid payback period due to their limited

! For interpretation of color in Figs. 9 and 10, the reader is referred to the web version
of this article.
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capital cost and relatively high annual savings).

The willingness to retrofit is a useful relative indicator to compare
different scenarios, and it is a critical input for the interconnected SD
model. Other critical BN variables which link with the SD model in-
clude the cost (mean and standard deviation) of a retrofit project based
on different hospital’s features (e.g. size, location), as well as the as-
sociated predicted annual water and energy savings.

3.3. System Dynamics model results and discussion

Fig. 10 shows the number of hospitals that would be retrofitted with
solar PV panels over time, given certain characteristics of the RLF. The
base case scenario (blue line) has a RLF with: (1) initial funding budget
of AUD$10 million; (2) low interest rate (set to 2%); and (3) an average
loan duration of 10 years. Three alternative scenarios were examined
where the specific RLF features were changed. In the base case scenario,
despite a slow initial uptake due to a quick depletion of the RLF funding
budget before the repayments can replenish it, a peak number of hos-
pitals (i.e. 60) were retrofitted after about 10 years. The simulations ran
for 75 years in order to account for multiple life-cycle of the retrofit
option and the associated interdependent, nonlinear effects on the full
system modelled. This does not account obviously for new emerging
future technologies or changing political/financial environments and
thus the policy-maker should focus on the first few years of the simu-
lations based on their own interests.

Three strategies were examined to increase the initial retrofit pro-
ject loan approval rate: (1) double interest rate to 4% (green line); (2)
halve loan duration (purple line); and (3) double initial RLF capital to
AUD$20 million (red line). Doubling the interest rate led to an increase
in the amount of repayments back to the RLF pool but did not produce
any considerable change in trend since higher interest rates reduced the
level of the attractiveness of a retrofit project and thus the proponents’
willingness to retrofit. Decreasing the loan duration led to an increase
in the retrofitting rate, since the repayments would be quicker and the
adverse effect on the willingness to retrofit would be more contained
than in case of higher interest rates. The best of the three strategies was
to double the initial RLF funding pool since greater numbers of retrofit
projects could be initially funded without impeding on the monetary
attractiveness of the retrofit project. Doubling the initial RLF capital
enabled 100 hospitals to retrofitted, instead of 60 for the baseline
scenario, in the first 10 years. It should be noted that the RLF capital
can be returned to the funding agency with accrued interest after a
stipulated period of time (e.g. 25 years).

Fig. 11 shows the same outputs estimated for the second retrofit LED
lights and tap aerators option. In this case, a total of 150 hospitals
would be retrofitted under the same optimised scenario for the RLF; this
is due to the higher willingness to retrofit calculated from the BN, and
the lower cost allowing the same funding pool to approve more loans.

The interlinked BN and SD models demonstrated that a RLF coupled
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with performance contracting approach showed that the combination
of LED lights and tap aerators was preferable to solar PV panels. The
RLF scheme had four categories of funding based on the size of the
hospital (i.e., each hospital would be able to access only one specific
funding scheme based on its size). Table 1 illustrates the results of the
optimisation process with the SD model. The common inputs were a
low (2%) interest rate and loan duration of 10 years. Although the SD
model presents monetary savings based on recent energy prices, both
kWh and ML of predicted energy and water saved is also provided in
order to free the model from the uncertainty around future energy
prices. Different scenarios of potential future energy prices can be in-
corporated in the SD model, however they were out of the scope of the
current study, given the high volatility of the energy price and thus the
uncertainty around such projections [24]. Nevertheless, based on cur-
rent (2016) water and energy prices in different Australian states, from
the models it could be estimated that savings in water bills account for
only a small portion (7% on an average) of the total costs savings,
unlike energy savings which accounts for the remaining 93%. It must be
noticed though, that a proportion of the energy savings originated from
an expected reduction in water-related energy consumption (i.e. water
heating). This outlines the importance of the water-energy nexus and of
relatively inexpensive solutions such as tap aerators, traditionally re-
garded as water-saving devices but that can considerably help de-
creasing the energy use.

Smaller hospitals (Category 1) would have lower project costs and
thus a small funding capacity would be sufficient to retrofit several of
them. However, the same funding capacity might be very limited for
larger hospitals requiring expensive, large-scale upgrades. In our si-
mulations, a funding amount of $5M was enough to retrofit a total of
151 small hospitals after 20 quarters or five years, however the same
funding pool would only enable the retrofit of six Category 4 hospitals
- — Loan duration halved

——Base case - Interest rate doubled

140

EnvlpAgr

— -RLF capital doubled
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Fig. 9. BN modelling results for willingness to retrofit based on dif-
ferent financial options.

RLF+EPC+High
impl

within the same period. Hence we were able to optimise the funding
amount for each pool with the SD in order to achieve an acceptable
number of retrofitted hospitals (i.e. around 30% across the different
categories).

The RLF capital investment of AUD$80M, spread differently across
the four size categories, achieved monetary savings in energy and water
use of almost five times such capital investment within ten years. An
added benefit was that more than 23 million of metric tonnes of emitted
carbon dioxide could be avoided; on an annual basis, this would re-
present more than 1% of the total greenhouse gases emission of the
overall Australian electricity sector [53]. Considering that we analyse
only one category of public building (i.e. hospitals), and only two
simple retrofit options in this study, such figures are promising. Also,
almost 2000 GWh in energy savings could be achieved, as well as more
than 10,000 ML of water savings. More importantly, each hospital
would achieve an average AUD$400,000 positive net return of invest-
ment after ten years.

This study was limited in scope to considering only the direct
monetary water and energy benefits from retrofit projects. The wider
indirect benefits were not examined, including the creation of em-
ployment and specialist retrofit industry growth within Australia and
potentially export services overseas.

4. Conclusions

A hybrid BN-SD modelling framework was developed to examine
the attractiveness and potential benefits of a number of strategies for
promoting public building energy and water retrofit projects in
Australia. In this current study, the framework was demonstrated for
one particular public building category, namely hospitals which are
acknowledged as being energy and water intensive. However, the

Fig. 10. SD predicted number of hospitals retrofitted with solar PV
panels.
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Fig. 11. SD predicted number of hospitals retrofitted with LED lights
and tap aerators, SD simulation.
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Predicted retrofitting projects benefits for different funding pools and overall; case of LED lights and tap aerators.

Hospital size category 1 2 3 4 Total/average
Funding amount proposed [AUD$M] 5 10 15 50 80

Number of retrofitted hospitals after 5 years [No.] 151 71 34 128 384

Number as a % of the category’s total [%] 32% 28% 26% 27% 29%

Average net savings per hospital in 10 years [AUD$] 490,000 474,000 345,000 281,000 397,000

Cost savings after 10 years [AUD$M] 132.2 79.3 39.6 128.5 379.6

Total energy savings in 10 years [GWh] 499 363 203 698 1763

Total water savings in 10 years [ML] 1767 1434 1107 6139 10,448
Emission savings after 10 years [MMt CO5-€] 1.9 5.7 3.8 12.3 23.7

developed models can be easily adapted to other public buildings ca-
tegories.

Firstly, a BN model was developed to examine the suitability of
different financing mechanisms, procurement approaches and con-
textual factors, based on how they would affect the willingness to ret-
rofit a given hospital. BN modelling identified RLF coupled with ESCO
as the optimal financial/procurement strategy for promoting greater
rates of public building retrofits, which confirmed the findings of a
review completed by the authors [1].

The BN model was linked to a developed SD model that was pur-
posed to quantify how the best-practice strategic options examined (i.e.
RLF) influenced energy and water savings of the two explored retrofit
solutions (i.e. solar PV panels; LED lights and tap aerators) as well as
the associated monetary and carbon emission savings.

The results showed how the RLF capital investment of AUD$80M
coupled with an effective procurement approach could deliver sig-
nificant monetary savings of approximately AUD$400M within ten
years. Moreover, carbon emission reductions of over 23.7 million
tonnes of CO, could be avoided over a ten-year time frame, which
would assist the Australian government to achieve stated carbon re-
duction targets. Additionally, the creation of a growing specialist ret-
rofit industry within Australia would create new employment and
promote greater retrofitting rates within other building sectors (e.g.
private commercial buildings). Achieved water savings are also im-
portant in a scenario where increased climate variability and popula-
tion growth pose threats to water supply availability. Moreover, the
potential of inexpensive water-saving devices (e.g. tap aerators) to re-
markably decrease energy consumption through the water-energy
nexus (e.g. hot water use reduction) is evident.

Future work will focus on better capturing the wider indirect ben-
efits of retrofit projects (i.e. employment growth), exploring retrofit
rates for other public building categories (e.g. schools) as well as other
building sectors (e.g. hotels), and the optimisation of a wider range of
retrofit opportunities (e.g. efficient air-conditioning systems). Such a
comprehensive coupled BN-SD model would assist policy makers to
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better understand how the best combination of well-formulated stra-
tegies and incentives can derive optimal net-positive retrofit project
investments over the long term.
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