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Abstract This paper concerns multivariate machine learning-based prediction models of freeway

traffic flow under non-recurrent events. Five model architectures based on the multi-layer percep-

tron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), CNN-LSTM

and Autoencoder LSTM networks have been developed to predict traffic flow under a road crash

and the rain. Using an input dataset with five features (the flow rate, the speed, and the density,

road incident and rainfall) and two standard metrics (the Root Mean Square error and the Mean

Absolute error), models’ performance is evaluated.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

The Intelligent Transportation System (ITS) relying heavily on
traffic flow prediction enables traffic stakeholders to use trans-
portation networks safer and more efficiently [1,2]. Individual

travelers, traffic managers, policymakers, and road users are
all traffic stakeholders.

The quality of traffic data determines the effectiveness of
these systems, and only then can an ITS be successful. Accord-
ing to the World Health Organization’s Global Status Report
on Road Safety, road traffic deaths continue to rise, with 1.35

million recorded in 2016. This makes traffic forecasting a vital
tool in reducing congestion and making travel safer and more
cost-effective [3,4].

The big question is whether or not traffic patterns, queuing
patterns, and time can be accurately predicted. Can forecasting
traffic flow assist decision-makers in avoiding potential traffic

jams? As a result, these questions have emerged as critical
areas of study, particularly in urban settings. The urban fleet
of vehicles has recently advanced to the point where filtered

sensor data can be uploaded directly to the cloud [5].
Predicting traffic flow is improved when a vehicular cloud

provides services to autonomous vehicles. However, some pre-
diction models find it challenging to estimate traffic with accu-

racy due to the integration of many variables from various
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Fig. 1 Study region (red curve), Link9: between the Cranford

Avenue on-ramp and the Canning Highway northbound off-ramp

[47].
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road segments and time-varying traffic patterns. It is challeng-
ing to accurately estimate traffic parameters in prediction mod-
els since traffic is unpredictable and dynamic [6]. Prediction

models are severely constrained by physical infrastructure
and traffic laws, and external events like accidents, weather,
and road closures significantly impact the model. Understand-

ing the various architectures created to handle this issue is
crucial.

The transportation industry has recently transitioned into

the big data age [7]. The collection of relevant data, such as
traffic speed, weather, and accident data, heavily relies on sen-
sors and other equipment in traffic congestion forecasting.
While traditional models employ shallow networks, vehicles

on the road have grown exponentially in recent years, and tra-
ditional models are no longer applicable in current scenarios.
Traditionally, the models utilise parametric methods [8]. For

predicting the short-term traffic flow, well-known standards
and frameworks are employed, e.g., ARIMA (Auto-
Regressive Integrated Average) model [9]. The results confirm

that ARIMA model was adapted and altered for better perfor-
mance which is confirmed [10–12]. The inherited nature of the
traffic flow is non-deterministic (stochastic) and non-linear,

which is why the parametric model’s predictions are not accu-
rate [13]. Hence, the non-parametric model has been chosen.
Artificial Neural Network (ANN) performed well, but accu-
racy decreased with big data reported by Smith et al. [14].

As a reason, various prediction models have been developed
based on deep learning models such as Restricted Boltzmann
Machines (RBM), Recurrent Neural Networks (RNN),

Short-Term Memory (LSTM), Deep Belief Network (DBN),
and Convolutional Neural Networks (CNN) [15–17].

The core idea behind Artificial Neural Network (ANN) is

that of a brain which functions with the help of a large collec-
tion of interconnected units for communicating between the
units [18]. A Multilayer perceptron (MLP) is a straightforward

example of a feed-forward ANN with input, hidden, and out-
put layers as its three structural components. The depth of
ANN, as the procedure is known, allows for more than one
hidden layer. An increase in the number of hidden layers

results in a higher resolution of information characterization.
In fact, including many hidden layers in an MLP is also
referred to as a deep learning algorithm. Each hidden layer

constitutes a certain number of inter-linked neurons with other
neurons, each connection having a certain weight. In ANN,
these weights are updated based on the information to deter-

mine an input–output relationship. The weights are trained
using a supervised machine learning technique known as back-
ward propagation [19,20]. However, unlike other deep learning
architectures, including feedback loops, MLP only comprises

forward connections between two neurons. Despite this, neu-
rons in the same layer are not linked. The information flows
from the input layer to the output layer, hence the name

feed-forward. MLP uses the Backpropagation training pro-
cess. A supervised learning algorithm in which the MLP learns
the desired output from varied entry data. It uses the input/

output pair of data train algorithms while unsupervised learn-
ing algorithms uses unlabeled data for clustering and analysis.

CNN is a deep learning algorithm mainly applied in the

image processing domain [21]. Other applications of CNN
include speech recognition [22], natural language processing
[23] and object recognition [24]. The idea behind CNN is that
of the animal visual cortex, characterized by connections
between neurons [25–27]. A CNN using its neuron organiza-
tion can identify features from higher dimensional data, e.g.

the pixels in an image. The input and output layers of CNN,
like those of MLP, are separated by a number of hidden layers
that can be combined, pooled, or completely coupled. These

convolution layers employ filters to capture characteristics
using various input information settings. A pooling layer can
give an abstract representation of the data by reducing the
dimensionality of the data. The prediction of the non-

linearity of traffic flow from the deep learning methods showed
promising results. The popular CNNs models have incorpo-
rated the 3-dimensional traffic dependencies [28,29]. The

time-based (short-term and long-term) traffic flow relation-
ships are accurately predicted by the RNNs model, especially
with LSTM designs [30,31]. Along with the advantages of

the models mentioned above, there are many disadvantages,
since the implemented transportation system is highly based
on data, and any missing data can lead to inaccurate results
[32]. The current study [33] tries to bridge the gap which is cre-

ated due to the missing data by using data imputation and
implementing the unsupervised tensor completion method.
Deep learning systems, e.g., RNNs or CNNs, need a large

amount of data which is quite an easy task nowadays as large
datasets are available, but sometimes these models can over-fit
the model because of the large fluctuations in the traffic flow

within a small interval of time [34].
Recent review articles discussed the traffic flow prediction

details regarding the urban flow prediction models, machine

learning-based methods, and statistical models [35,36,8,2].
They also discussed the many available deep learning architec-
tures and looked at the increasing popularity of numerous
hybrid methods [37]. Due to this, researchers have been adapt-

ing unsupervised methods with a hybrid approach instead of a
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deep learning architect [34,38]. The particular correlation was
developed by applying the Deep CNN model to random sub-
space learning [28]. Complex computations and multi-

dimensional inputs can be treated very easily with typical
DNN. The temporal and spatial characteristics can be esti-
mated by employing the self-learned filters. The model gener-

alization is improved by the CNN, and the overall
computational time was reduced. Due to these benefits, CNNs
are considered helpful in predicting traffic flow.
Fig. 2 Relationships of traffic variables under road incidents and ra

heavy level.

Fig. 3 Effect of rain on traffic speed f
A Recurrent Neural Network (RNN) takes the outputs
from the previous models and sometimes gets information
from the past and acts as a new type of neural network

[39,40]. RNN is extensively implemented by many researchers
in speech recognition and Natural Language Processing
(NLP). LSTM is also one of the architectures of RNN and

is widely used for processing time-series data [41]. It uses hid-
den components like memory cells. LSTM is useful for analyz-
ing long-time series data and forecasting with autocorrelations
infall effects: (a) road incident; (b) rainfall between medium and

rom 1 August to 1 November 2018.
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[42]. The LSTM model [43] is an effective recurrent neural sys-
tem created expressly to prevent the exploding or vanishing
gradient issues encountered when learning long-term depen-

dencies, even when the smallest time lags are fairly substantial
[44]. A constant error carousel (CEC), which retains the error
signal inside each unit’s cell, is typically used to prevent this.

Such cells are recurrent networks, having an intriguing design
of how the CEC is augmented with new components, particu-
larly the input and output gates, to create the memory cell. The

feedback is indicated by the self-recurrent connections with a
one-step latency. A cell, an input gate, an output gate, and a
forget gate make up a standard LSTM unit. The forget gate
was not initially included in the LSTM network, but Gers

et al. [45] proposed it as a way for the network to reset its state.
The three gates control the flow of information associated with
the cell, and the cell remembers values across arbitrary time

intervals. In short, the LSTM architecture comprises memory
blocks, a collection of recurrently connected sub-networks.
The memory block’s goal is to maintain its state over time

while using nonlinear gating devices to control information
flow.

For the temporal characteristic of sequential data, the

fundamental problem of gradients has vanished and helped
them to train against the Long-term dependencies. Deep
neural network modelling skills are enhanced by utilizing
the benefits of RNN and CNN [17]. T.Sainth et al. [17]

combined the LSTM with the CNN for the temporal
Fig. 4 Box plot of traffic variables with

Fig. 5 Machine lea
sequence. They observed an improvement of 4–6% when
implementing the different vocabulary tasks. Various
research studies have also combined the LSTM and CNN

model for the extraction of spatial and temporal characteris-
tics and it is found that the results were better when com-
pared to one model data [41].

The main issue in ML models is overfitting the training set
and lengthy training times. Thus, training using additional
data, employing early stopping to cease the network’s training

at the appropriate point, and using the proper number of
epochs are all necessary to prevent the overfitting of the model.
Recent studies have concentrated on predicting numerous out-
comes from multiple inputs utilizing a data set with different

classifications (features). Road incident is one of these features
that has a substantial impact on road capacity. The vehicle
movement and traffic accidents within the tunnels were being

detected and studied using the deep learning method [46].
Recently, multivariate deep learning model is the most chal-
lenging techniques for traffic flow prediction under non-

recurrent event. In this study, multivariate prediction models
based on a deep-learning model and a combined deep-
learning model have been developed to predict freeway traffic

flow under non-recurrent events. The work is structured as fol-
lows. Section 2 presents the study region and the input dataset
with 5 features including the traffic volume, speed, density,
boolean road incident and rainfall. Section 3 concerns the

methodology for traffic prediction using proposed models.
and without road incident and rain.

rning workflow.



Fig. 6 Architectures of various ML models: (a) MLP; (b) CNN; (c) LSTM; (d) 1D-CNN LSTM; (e) Autoencoder LSTM.

Table 1 Two standard metrics, RMSEs and MAEs, of ML for each traffic parameter.

RMSE

Parameter Baseline MLP CNN LSTM 1D CNN-LSTM AE-LSTM

Train Test Train Test Train Test Train Test Train Test Train Test

Flow rate 11.02 11.75 3.58 3.61 3.10 3.15 3.02 3.08 2.50 2.65 2.89 2.90

Speed 10.25 10.81 5.23 5.35 5.0 5.09 4.89 5.0 4.60 4.63 4.75 4.77

Density 24.15 24.71 7.32 7.55 7.22 7.29 7.02 7.11 6.65 6.70 6.75 6.80

MAE

Parameter Baseline MLP CNN LSTM 1D CNN-LSTM AE-LSTM

Train Test Train Test Train Test Train Test Train Test Train Test

Flow rate 6.52 6.98 4.18 4.63 4.0 4.10 3.90 3.98 3.70 3.75 3.75 3.80

Speed 5.49 6.18 2.75 2.80 2.70 2.71 2.58 2.60 2.46 2.50 2.50 2.55

Density 11.14 11.95 5.51 5.48 5.32 5.39 5.12 5.15 4.52 5.0 5.01 5.08

Multivariate machine learning-based prediction models 155
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Results and discussion are given in Section 5. The conclusion is
given in Section 6.
2. Study area and data

The study area, the Kwinana Smart Freeway in Western Aus-
tralia between the Cranford on-ramp and the Canning High-
Fig. 7 Observed traffic flow rate (top), speed (middle) and density (b

(4 September 2018).

Fig. 8 Baseline predictions of traffic flow rate (veh/min), speed (k
way off-ramp (link 9) with a total length of 2.13 km as
shown in Fig. 1, is chosen because it has a distinguished record
of the highest number of road accidents. For an effective mul-

tivariate ML model for long short-term traffic prediction, a
dataset of traffic variables (the flow rate, the speed, and the
density), road incidents and rainfall is used in this study. Traf-

fic data including the flow rate (volume), the speed and the
density from the Main Road Western Australia (WRWA)
ottom) with road crashes and rainfall during the prediction period

m/hr) and density (veh/km) under a road incident (w) and rain.
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are available between 1 January and 25 November 2018. In the
same period of available traffic data, road incidents and rain-
fall data are obtained from the Web Emergency Operations

Centre (WebEOC) and the Bureau of Meteorology (BOM)
WA, respectively.

2.1. Input data

Road incident data is converted into Boolean data by consid-
ering the non-existence as zero and the existence of the incident

as one. For rainfall message, rain rate intensity, is considered
in three categories including the light rain with precipitation
less than 0.1 inches per hour (iph), the moderate rain with pre-

cipitation between 0.1 and 2.5 iph and the heavy rain with rain-
fall greater than 2.5 iph. The input data is then obtained by
matching the timestamp of the traffic data, the boolean inci-
dent data and the rainfall data. In this study, we have a 1-

min input dataset with 429,120 observations and five features.

2.2. Road incidents and rain effects

Road incidents including crashes, vehicle breakdowns and
debris commonly affect the flow of traffic. Fig. 2 shows the
relationships of traffic variables under road incidents and rain-

fall effects. It is noted that the road incidents have an impact
on the traffic flow on the roadway. It may reduce 10–25% of
traffic capacity. Fig. 3 presents speed profile with rain’s effect
on Link 9 between 1 August and 1 November 2018. It indicates

that speed will drop on the roadway when it rains, as a driver
driving in the wet commonly reduces the speed to allow the
car’s tyres to grip to the road at all times.

Fig. 4 presents a box plot showing traffic flow with and
without the impact of the road incidents and the rain. It
Fig. 9 Long-term traffic prediction of the flow rate (veh/min), speed

ML model based on the 1D CNN-LSTM network.
demonstrates that the road incidents have a negative impact
on the speed and the density of traffic, and the rain seems to
magnify the effect of road incidents on the flow of traffic, indi-

cating by the significant higher density and lower speed. When
road incidents occur, the flow capacity decreases while the den-
sity increases.

3. Methodology

This section concerns building model architectures of multi-

variate prediction models based on the MLP, CNN, LSTM,
CNN-LSTM and Autoencoder LSTM networks.

The machine learning workflow, as illustrated in Fig. 5,

consists of data preparation, pre-processing, model training,
and model testing and evaluation.

3.1. Preparing data and pre-processing

Gathering, sorting and cleaning all datasets are needed for
development of the predictive learning model as any discrepan-
cies in the data will lead to the failure analysis of the predictive

model. The input dataset with n observations and five features
(classes) is in the form of

X ¼ ðX1
i ;X

2
i ;X

3
i ;X

4
i ;X

5
i Þ

n

i¼1;

where traffic parameters X1; X2; X3 denote respectively traffic

volume, speed and density, X4 is the boolean road incident

data, and X5 is the rainfall data.
The traffic parameters, road incident and rainfall data are

homogenised by feature scaling. By implementing the min–
max normalisation, xc

i is transformed to nci , provided nci greater
than zero and less than 1,
(km/hr) and density (veh/km) obtained from the best multivariate



Fig. 10 Short-term predictions under a road incident on 4 September 2018 between 10:25 and 10:55 obtained from five prediction

models based on various ML networks: the MLP, the CNN, the LSTM, the 1D CNN-LSTM and the Autoencoder LSTM networks.

158 F. Aljuaydi et al.



Multivariate machine learning-based prediction models 159
nci ¼
xc
i �minc

maxc �minc

; c ¼ 1; . . . :; 5; ð1Þ

where Xc is the values of the observed set of xc
i ;maxc and minc

represent the maximum and minimum values of Xc,

respectively.

4. Model architecture

The normalised input data with n observation and five fea-
tures are split into the test set (30%) and the training set
(70%). For each ML model, its optimal hyperparameters
are found by grid searching, the Adam optimiser [48] and

an early stopping technique. The accuracy and efficiency
of each trained model are assessed by two standard metrics,
the Mean Absolute Error (MAE) and the Root Mean

Squared Error (RMSE). These accuracies and efficiency
give information about the goodness of the learning model.
The deviation from the mean value estimated through the

RMSE and MAE can be calculated using the following
equations.

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij; ð2Þ

and

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

: ð3Þ

Fig. 6 demonstates five model architectures based on the

MLP, the CNN, the LSTM, the 1D-CNN LSTM and the
Autoencoder LSTM networks.

Table 1 presents model validation using two standard met-
rics, the RMSEs and MAEs. A lower value of the MAE or

the RMSE signifies a better model fit. The results indicate
that all ML models give better prediction than the baseline
model and the 1D CNN-LSTM model outperforms other

ML models including the MLP, the CNN, the LSTM and
the Autoencoder LSTM models. Comparing the RMSEs
and the MAEs of other models, the 1D CNN-LSTM model

gives the lowest values of the RMSEs and MAEs for all
cases, i.e., RMSEs of 2.65, 4.63 and 6.70 and the MAEs of
3.75, 2.50 and 5.0 for the flow rate, speed and density predic-

tions, respectively.
Table 2 RSMEs and MAEs of ML models’ performance for short

RMS

Parameter Baseline MLP CNN

Flow rate 9.65 1.85 1.82

Speed 14.26 3.57 2.98

Density 10.38 3.59 2.65

MAE

Parameter Baseline MLP CNN

Flow rate 5.93 2.38 2.38

Speed 7.14 3.15 2.27

Density 5.09 3.65 2.80
5. Results and discussion

For long and short-term predictions of traffic flow under a
road crash and the wet road with rain intensity between med-

ium and high rate, the Link-9 observed traffic flow under non-
recurrent events on 4 September 2018 is chosen in this study
because there was a long-period road crash between 10:24

and 13:09 (black star with dark solid line) and three periods
of heavy rain, i.e., 4:30–6:00, 14:00–14:30 and 19:00–21:30
(purple star with purple solid line) as shown in Fig. 7. Using
all proposed ML models, traffic variables including the flow

rate, the speed and the density under non-recurrent events
on Link 9 of the Kwinana Freeway are predicted and com-
pared to find the optimal prediction model.

Fig. 8 shows long-term predictions of traffic parameters
using the baseline model. As the baseline model gives average
values of each traffic parameters, it thus cannot capture traffic

patterns during non-recurrent events. Here, we present the per-
formance of various ML models for predicting traffic pattern
under the road crash and the rain. It is found that the best

long-term prediction model is based on the 1D CNN-LSTM
networks. Its prediction performance is illustrated in Fig. 9.

For short-term prediction of traffic flow under non-
recurrent events, we consider separately the effect of a road

crash and the heavy rain on traffic flow within 30 min after
the occurrence of the incident (solid line).

In this study, observed data of traffic flow under a road

crash (a dark star) between 10:25 and 10:55, and the heavy rain
(a purple star) between 20:10 and 20:40 were compared with
the predicted data. Fig. 10 presents the short-term prediction

of traffic flow under a road crash. It illustrates that two ML
models based on the LSTM and the 1D CNN-LSTM networks
performed better than other ML models as they attained the

low values of the RMSEs of 1.75, 2.85 and 2.50, and MAEs
of 2.30, 2.18 and 2.75 for the flow rate, speed and density pre-
dictions, respectively, as shown in Table 2.

Fig. 11 shows the short-term prediction of traffic flow under

the heavy rain. The results indicate that the MLP model gives
the worst prediction with RMSEs of 4.03, 5.30 and 7.09 for the
flow rate, speed and density predictions, respectively. The 1D-

CNN LSTM model performed better than other models as it
attained RMSEs of 1.18, 3.45 and 1.15, and MAEs of 1.67,
1.73 and 1.87 for the flow rate, speed and density predictions,

respectively, as shown in Table 3.
-term prediction under a road crash.

E

LSTM 1D CNN-LSTM AE-LSTM

1.80 1.75 1.78

2.92 2.85 2.89

2.63 2.50 2.55

LSTM 1D CNN-LSTM AE-LSTM

2.33 2.30 2.35

2.24 2.18 2.22

2.85 2.75 2.79



Fig. 11 Short-term predictions under the rain on 4 September 2018 between 20:10 and 20:40 obtained from five prediction models based

on various ML networks: the MLP, the CNN, the LSTM, the 1D CNN-LSTM and the Autoencoder LSTM networks.
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Table 3 RSMEs and MAEs of ML models’ performance for short-term prediction under the rain.

RMSE

Parameter Baseline MLP CNN LSTM 1D CNN-LSTM AE-LSTM

Flow rate 9.65 4.03 3.30 1.23 1.18 1.78

Speed 14.26 5.30 4.10 3.80 3.45 3.50

Density 10.38 7.09 4.55 1.26 1.15 3.75

MAE

Parameter Baseline MLP CNN LSTM 1D CNN-LSTM AE-LSTM

Flow rate 5.93 3.38 2.79 1.78 1.67 1.81

Speed 7.14 3.15 1.89 1.82 1.73 1.79

Density 5.09 3.65 2.80 2.09 1.87 3.23

Multivariate machine learning-based prediction models 161
6. Conclusions

Using an input data with large observations and five features,

the multivariate prediction models based on the Multilayer
Perceptron (MLP), One-dimensional Convolutional Neural
Network (1-D CNN), the Long Short-term Memory (LSTM)

network, 1D-CNN LSTM and Autoencoder LSTM networks
have been developed to predict freeway traffic under non-
recurrent events. The data features include the flow rate, speed,
density, the boolean incident and rainfall. From the results

obtained from our proposed multivariate prediction models,
we can conclude that:

� The proposed models capture traffic pattern under non-
recurrent events. Few discrepancies have been observed in
the traffic flow rates between the predicted and observed

values. The difference is noticeable when there was an
incident.

� The 1D-CNN LSTM prediction model for the density, flow
rate, and speed gives more accurate results than those

obtained from other ML models.

In the off-ramp and on-ramp areas, more delays and dis-

ruption occur, further research will look at the congestion that
happens due to the lane change and non-recurrent events. For
this purpose, the traffic flow characteristics will be predicted by

the time-delay deep neural network model. A deep traffic con-
gestion model will be developed to predict the bottleneck in the
traffic flow. This will help to predict the congestion propaga-

tion for the targeted routes.
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