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ABSTRACT
This study presents a distributionally robust optimizationmodel to address
the ramp metering problem with uncertain traffic demand flows. The aim
of this model is to minimize the total travel delay of the system based on
themacroscopic cell transmissionmodel (CTM) of traffic flow. In ourmodel,
the only required data is the partial distributional information of stochas-
tic demand flows. Using the Worst-Case Conditional Value-at-Risk (WCVaR)
constraints to approximate the distributionally robust chance constraints,
the proposed problem can be conservatively approximated as a semidef-
inite programming (SDP), which is computationally efficient. The perfor-
mances of our proposed model are illustrated by practical applications.
Experimental results show that the distributionally robust control strategy
can achieve reliable performances over a range of uncertain scenarios.
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1. Introduction

The congestion of traffic has a significant effect on various social issues, such as public health, safety,
fuel consumption, environment and security. The social costs of traffic congestion across Australian
capital cities are about 20.4 billion in 2020 based on the estimation of the Bureau of Infrastructure,
Transport and Regional Economics (BITRE) (Systematics 2005). Over the past several decades, a set
of practical measures and control strategies, including public transportation services, infrastructure
expansions, and several operational enhancements known collectively as Intelligent Transportation
Systems (ITS) have been proposed to improve freeway operations. One of the operational strategies
for improving the freeway operation is rampmetering, which limits the incoming flow from on-ramps
to the freeway.

The seminal research of optimization-based rampmetering can be traced back to thework (Wattle-
worth 1963), where a static model of traffic behaviour was used to formulate the problem. This model
was subsequently investigated and extended by Yuan and Kreer (1971); Wang and May (1973); Iida
et al. (1990). One of the most widely adopted classes of models in the freeway control design is the
macroscopic models, including the first order models (Cell transmissionmodel (CTM)) and the second
order models (Metanet). The CTMmodel initially proposed by Daganzo (1994, 1995) can be regarded
as a first-order Godunov approximation of the continuous Lighthill-Whitham-Richards-model (LWR)
(Lighthill and Whitham 1955; Richards 1956), and Metanet was proposed by Messmer and Papageor-
giou (1990). Particularly, Papageorgiou et al. (2003) and Papageorgiou and Kotsialos (2002) concluded
that freeway rampmetering is a useful and effective tool to improve traffic flows on congestion-prone
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freeways. Kotsialos and Papageorgiou (2004) proposed amodel-predictive framework for coordinated
rampmetering rooted in the METANETmodel and formulated the considered problem as a nonlinear
optimization problem. Based on the asymmetric cell transmissionmodel, Gomes and Horowitz (2006)
consideredanon-rampmeteringproblem,whereboth free flowandcongested conditions canbe cap-
tured by the problem formulation. Gomes et al. (2008) further provided a theoretical analysis to study
the behaviour of the CTM model of a freeway with steady demand. To analyse traffic flow density on
freeway sections with random demand and supply, Sumalee et al. (2011) developed a stochastic cell
transmission model by characterizing the probability distributions of occurrence of each mode.

Recently, Chow and Li (2014) proposed a robust optimization model of dynamic motorway traf-
fic flow to optimize the total travel delay of the system with random traffic flow demands as well as
set-valued fundamental diagrams (Kurzhanskiy and Varaiya 2012). The problem was reformulated as
a minimization and maximization problem when an ellipsoidal likelihood set was considered. Ron-
coli, Papageorgiou, and Papamichail (2015a) developed a novel first-order multi-lane macroscopic
traffic flow model for motorways to consider lane changing and capacity drop via appropriate pro-
cedures for computing lateral and longitudinal flows. Based on the work (Roncoli, Papageorgiou, and
Papamichail 2015a), Roncoli, Papageorgiou, and Papamichail (2015b) proposed a linearly constrained
optimal control model by permitting the deployment of lane changing control, variable speed limits,
and rampmetering. Han et al. (2015) proposed a general first-order traffic flowmodel to simulate the
capacity drop at the on-ramp bottleneck and lane drop bottleneck. On this basis, a linear quadratic
model for predictive control strategy was proposed to realize the integration of dynamic path guid-
ance and ramp metering. Furthermore, Han et al. (2017) considered the propagation of shockwave
on the freeway network, and modified the supply function that depends on the density difference
between cell i and its upstream cell i − 1, where both cells are congested. In addition, on the arterial
links where shockwave is generated during each cycle, if the upstream is in a free-flow condition, as
in the modification (Han et al. 2017), the demand function of the target cell will have the same struc-
ture as the traditional CTM, and it will overestimate the actual discharge rate in the target cell. Under
the assumption that equipped vehicles can bidirectionally communicate with the infrastructures, a
novel feedback based integrated control strategy was proposed by Tajdari, Roncoli, and Papageor-
giou (2020) to implement rampmetering and lane-changing control. By adjusting the adaptive cruise
control (ACC) settings of equipped and connected vehicles in real time on the basis of the current
traffic conditions, a simple and effective ACC-based control strategy is proposed by Spiliopoulo et al.
(2018), where this control strategy relies only on real-time information about the current traffic condi-
tions (no network topology information is required). Kontorinaki, Karafyllis, and Papageorgiou (2017)
proposed a local and coordinated ramp metering strategy based on the nonlinear adaptive control
scheme, which consists of a nominal feedback law and a nonlinear observer aimed at estimating some
unknown system variables.

However, solutions obtained from the deterministic optimization models (DOM) and robust opti-
mization models (ROM) are overly conservative. An adjustable robust optimization approach has
been developed to alleviate the conservatism (Ben-Tal et al. 2004). Based on the work, Zymler, Kuhn,
and Rustem (2013) proposed a novel method to approximate the distributionally robust individ-
ual and joint chance constraints with the first- and second-order moments and the support of the
uncertainties of parameters. The approach is effective and outperforms the approximation proposed
by Chen et al. (2010) and Bonferroni approximation. Although a number of researches have stud-
ied the robust solutions of ramp metering optimization, little has been done on problems where
only partial information (such as mean and variance) of traffic parameters is available. Since the
information provided by loop detectors may be incomplete in practice, using exact information of
traffic parameters to study the traffic problem is often not possible in practice. It is an interesting
point that we can conduct our research. The major contribution of this paper can be concluded as
follows:



654 C. GU ET AL.

Firstly, we propose a distributionally robust chance constrained optimizationmodel (DRCCOM) via
rampmetering that incorporates the uncertain flowdemands in the triangular fundamental diagrams.
The partial distributional information of stochastic demand flows is given.

Secondly, the Worst-Case Conditional Value-at-Risk (WCVaR) constraints are adopted to
approximate the distributionally robust chance constraints in our model, and then the approach
(Zymler, Kuhn, and Rustem 2013) was applied to approximate the WCVaR constraints by the semidef-
inite programming (SDP) constraints. The approximation is exact and computationally efficient for
distributionally robust individual chance constraints if the constraint functions are concave.

Finally, numerical results show that our model is efficient and outperforms deterministic optimiza-
tion and robust optimization for minimizing the total delay of the freeway system.

The rest of the paper is organized as follows: Section 2 models the traffic flow dynamics. In
section 3, we introduce the considered optimization problem rooted in the deterministic cell trans-
mission model. The approximation of distributionally robust chance constraints will be presented in
Section 4. In Section 5, the performances of various control strategies are illustrated and compared
using practical examples. Finally, Section 6 gives some conclusions.

2. Modelling traffic flow dynamics

Lighthill and Whitham (1955) and Richards (1956) proposed the simplest continuous macroscopic
model which is known as the kinematic wavemodel and is also called LWRmodel. The model is given
by a single partial differential equation based on the conservation of vehicles. To extend and discretize
the LWRmodel, a lot of work has been done. The CTM proposed by Daganzo (1994) is one of themost
widely utilized discrete models. Due to the popularity and credibility of CTM, we utilize CTM to model
the traffic flow dynamics in this paper.

In the formulation of CTM, a freeway is divided into I subsections or cells (see Figure 1). Each cell
has an external incoming flow ri,t from an on-ramp i to the freeway and an external outgoing flow si,t
from the freeway to an off-ramp i at time step t, and the flow fi,t and density ρi,t in each cell i at each
time step t can be used to characterize the traffic flow dynamics. Let fi−1,t denote the traffic inflow
to downstream cell i at each simulation time step t and, hence fi,t (inflow to downstream cell i + 1)
denotes the traffic outflow from cell i at the same simulation time step t. Based on the conservation
equation, the evolution of density in cell i is described as follows:

ρi,t+1 = ρi,t + �t

�xi
(fi−1,t − fi,t + ri,t − si,t) (1)

where � xi and � t is the length of the cell i and the size of the simulation time step t, respectively.
Depending on the network topology, some terms of Equation (1) may not be present. In particular,
the inflow f0,t does not exist for the first cell of the network, the inflow ri,t does not exist for the cell
without an on-ramp, while the outflow si,t exists only for the cell with an off-ramp. It is noted that the
time step � t is defined such that � t ≤ mini(� xi/vi), which is the smallest ratio of the cell length
� xi to the corresponding free flow velocity vi on the freeway. The condition is used in traffic flow
modelling to guarantee the numerical stability and nonnegativity of traffic quantities by limiting the
distance travelled by vehicles in one simulation time step to no more than the length of the cell.

Figure 1. Schematic diagram.
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In the case of a given cell density, the outflow from the cell i during the time step t is controlled by
the min(.) function as follows:

fi,t = min{viρi,t , Ci,Ci+1,wi+1(ρmax,i+1 − ρi+1,t)} (2)

where Ci represents the capacity flow of cell i and Ci+1 denotes the capacity flow of cell i + 1. Due to
theheterogeneous segmentswithdifferent capacities at different locations,we consider both capacity
flows in adjacent cells. Furthermore, vi represents the free flow velocity of cell i,wi+1 denotes the back-
ward wave speed of cell i + 1 and can be obtained from the equality wi+1 = Ci+1/(ρmax,i+1 − ρc

i+1),
where ρmax,i+1 is the jam density and ρc

i+1 corresponds to the critical density and can be derived as
ρc
i+1 = Ci+1/vi+1. Define ydi,t = min{viρi,t ,Ci} and ysi+1,t = min{Ci+1,wi+1(ρmax,i+1 − ρi+1,t)}, where ydi,t

denotes the demand function corresponding to the maximum outflow from cell i at the time step
t, and ysi+1,t is the supply function corresponding to the maximum flow received by cell i + 1 at the
same time step t. Note that variables vi, Ci,wi, ρmax,i, ρc

i represent themodel parameters of CTM, which
can be calibrated using collected data by loop detector (Dervisoglu et al. 2009). Based on the results
(Gomes and Horowitz 2006; Lo 1999), Equation (2) is reformulated as a linear programming problem,
which is the key of the optimization model presented in the next section.

3. Optimizationmodel

In this section, we firstly review the CTM-based deterministic optimization model adopted by Gomes
and Horowitz (2006); Chow and Li (2014); Lo (1999); Ziliaskopoulos (2000), and then rewrite it as a
distributionally robust chance constrainedproblemwith considerationof theuncertaindemand flows.

3.1. Deterministic optimizationmodel

We rewrite the CTM-based freeway optimization model as follows:

(DOM)min
r

D =
I∑

i=1

T∑
t=1

(
ρi,t�xi�t − fi,t�xi�t

vi

)
+

J∑
j=1

T∑
t=1

qj,t�t (3)

s.t.

ρi,t+1 = ρi,t + �t

�xi
× (fi−1,t − fi,t + ri,t − si,t), ∀i, t (4)

fi,t ≤ viρi,t , ∀i, t (5)

fi,t ≤ Ci, ∀i, t (6)

fi,t ≤ Ci+1, ∀i, t (7)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t),∀i, t (8)

qj,t+1 = qj,t + (dj,t − rj,t)�t,∀j, t (9)

qj,t ≤ qmax,j, ∀j, t (10)

0 ≤ rj,t ≤ rmax,j, ∀j, t (11)

To seek the optimal rampmetering r, the optimization problemabove is tominimize the total delay
D of the system over cells i = 1, 2, . . . , I and time t = 1, 2, . . . , T . The objective function D includes the
total delay in both mainline and on-ramps, where ρi,t�xi�t − fi,t�xi�t

vi
represents the mainline delay

in cell i at time t (see Chow and Li (2014)), and qj,t denotes the queue length on the on-ramp j at time
t. The constraint set (Equations (4)–(8)) is equivalent to the CTM, as stated by Gomes and Horowitz
(2006), Lo (1999) and Ziliaskopoulos (2000). Both constraints (5) and (6) specify the demand limita-
tions when the flow is under the free flow condition, whereas the constraints (7) and (8) characterize
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the supply limitations when the flow is under congested condition. We assume that the exit flows
si,t is given throughout the paper. Constraint (9) characterizes the evolution of queues qj,t on the on-
ramps j = 1, 2, . . . , J at time step t, where J denotes the total number of on-ramps.Weusedj,t to denote
the variable of the demand flow intending to enter the freeway from on-ramp j at time step t and
rj,t to denote the actual incoming demand flow entering the freeway from on-ramp j at time step t.
Constraint (10) is used to govern the maximum queue size on the on-ramps avoiding that the unac-
ceptably long queue on the on-ramps will be adopted as an optimal solution. Finally, constraint (11)
gives the lower and upper bounds of the control variable r. The optimal ramp metering r is used to
obtain the optimal control, which can also be realized through the hard shoulder running as well as
the mainline speed control (Li, Chow, and Cassel 2014).

3.2. Distributionally robust chance constrained optimizationmodel

Before presenting the distributionally robust chance constrained optimization model, we summa-
rize the state-of-the-art of works in solving chance constraints in Table 1. By comparison, we adopt
the approach proposed by Zymler, Kuhn, and Rustem (2013) to approximate distributionally robust
chance constraints because of its established theoretical analysis and computational efficiency.

The deterministic optimizationmodel (DOM) can be extended to the distributionally robust chance
constrained optimization model (DRCCOM) with consideration of uncertain demand flows. Since the
optimization problem (3) is a minimization problem and the constraint (9) is the only constraint asso-
ciated with the traffic demand flows on the source links (such as on-ramps), both constraints (9) and
(10) can be rewritten as the following constraints:

qj,t+1 = qj,t + (d̃j,t − rj,t)�t, ∀j, t (12)

and

P(qj,t − qmax,j ≤ 0) ≥ εd , ∀j, t (13)

where d̃j,t denotes the random demand flow variable on the on-ramp j at time step t and εd ∈ (0, 1)
is the confidence parameter. The violation of constraint (13) means that the waiting queue length is
longer than the maximum queue on source links. Due to the fact that the mean and covariance of
uncertain demand flows are given, the chance constraint (13) can be rewritten as follows:

inf
P∈P

P(qj,t − qmax,j ≤ 0) ≥ εd , ∀j, t (14)

whereP is the set of all probability distributions.

Table 1. Methods for solving chance constraint.

Type Handling technique Disadvantage

Scenario approximation (Calafiore and Campi
2005)

Using the constraints for the scenario sample
points to replace the chance constraints

Prohibitively time consuming

Generator-based approximation (Nemirovski
and Shapiro 2006)

The chance constraints are approximated by
CVaR inequalities

The approximated problem
might be intractable

Chebyshev’s Relaxation (Sun et al. 2017) Relaxing the chance constraints byChebyshev’s
inequality

Solution is too conservative

Robust chance constraints (Zymler, Kuhn, and
Rustem 2013; Hanasusanto et al. 2015)

Replacing the chance constraints by the Worst-
case chance constraints under moment
information, which can be transformed into
a convex optimization problem with SDP or
conic constraints

High computational cost
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By Equation (4), the density ρi,t can be rewritten as

ρi,t = ρi,1 +
t−1∑
l=0

�t

�xi
(fi−1,l − fi,l + ri,l − si,l), ∀i, t (15)

Similarly, the queue length qj,t can be reformulated as

qj,t = qj,1 +
t−1∑
l=0

(d̃j,l − rj,l)�t (16)

Let d̃j = {0, d̃j,1, d̃j,2, . . . , d̃j,T−1}� ∈ RT , and Bt−1 = {�t,�t,�t, . . . ,�t, 0, . . . , 0}� ∈ RT . By the
above relationship (16), the relationships (12) and (13) can be simplified as follows:

inf
P∈P

P

{
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j ≤ 0

}
≥ εd , ∀j, t (17)

Then, the robust rampmetering problem with uncertain demand can be rewritten as:

(DRCCP)min
r

D =
I∑

i=1

T∑
t=1

(
[ρi,1 +

t−1∑
l=0

�t

�xi
(fi−1,l − fi,l + ri,l − si,l)]�xi�t − fi,t�xi�t

vi

)

+ E

⎡⎣ J∑
j=1

T∑
t=1

(
qj,1 −

t−1∑
l=0

rj,l�t + B�
t−1d̃j

)
�t

⎤⎦ (18)

subject to constraints (6), (7), (11), (15), (17) and

fi,t ≤ vi[ρi,1 +
t−1∑
l=0

�t

�xi
(fi−1,l − fi,l + ri,l − si,l)],∀i, t (19)

fi,t ≤ wi+1

[
ρmax,i+1 − ρi+1,1 −

t−1∑
l=0

�t

�xi
(fi,l − fi+1,l + ri+1,l − si+1,l)

]
,∀i, t (20)

Due to the distributionally robust chance constraint (17), we have difficulty to solve the Problem
(DRCCP) directly. Thus, we need to transform the problem into a solvable problem, which is presented
in the next section.

4. Approximation of distributionally robust chance constraint

An approximation approach proposed by Zymler, Kuhn, and Rustem (2013) is utilized to approximate
the constraint (17) in this section.

We let μj ∈ RT be the mean vector and �j ∈ ST be the covariance matrix of the random demand
flow vector d̃j under true distribution P throughout this paper. Thus, we implicitly assume that P

has finite second-order moments. Without loss of generality, we assume that �j � 0. To simplify the
notation, we let

�j =
[
�j + μ�

j μj μ�
j

μj 1

]
(21)

denote the second-order moment matrix of d̃j . Chen et al. (2010) has proved that the constraint (17)
can be approximated by the Worst-Case CVaR constraint. Thus, we have

R(αj,t) =
{

(f , r) : sup
P∈P

CVaR1−εd

(
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j

)
≤ 0

}
,∀j, t (22)
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where

CVaR1−εd

(
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j

)

= inf
αj,t∈R

⎧⎨⎩αj,t + 1
1 − εd

EP

⎡⎣(qj,1 −
t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t)

+⎤⎦⎫⎬⎭ ,∀j, t (23)

where αj,t is the decision variable in chance constraints, EP(•) denotes the expectation of the distri-
bution P, and (•)+ = max•, 0 (see Rockafellar and Uryasev (2000, 2002) for more details).

An approximation approach proposed by Zymler, Kuhn, and Rustem (2013) based on the
semidefinite programming (SDP) is utilized to approximate the constraint (22). By supposing that
the mean and covariance matrix of stochastic variables are available, Zymler, Kuhn, and Rustem
(2013) firstly used the Worst-case Conditional Value-at-Risk (WCVaR) constraints to approximate dis-
tributionally robust chance constraints, and then the WCVaR constraints were reformulated into SDP
constraints. The results indicated that the approximation is exact when the roust individual chance
constraint is a concave or quadratic function. In this paper, the approximation approach proposed by
Zymler, Kuhn, and Rustem (2013) is adopted to approximate the constraint (17) and the equivalent
form of constraint (22) is presented as the following theorem.

Theorem4.1: If the demand flow d̃j follows an unknownprobability distributionwith givenmeanμj and
covariancematrix�j , then the constraint (17) can be approximated as follows:

R(αj,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(f , r) :

∃(αj,t ,Aj,t) ∈ R × ST+1

αj,t + 1
1 − εd

〈
�j ,Aj,t

〉 ≤ 0,Aj,t ≥ 0

Aj,t −

⎡⎢⎢⎢⎣
0

Bt−1

2
B�
t−1

2
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j − αj,t

⎤⎥⎥⎥⎦ ≥ 0

,∀j, t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where Aj,t ∈ ST+1 is the T +1-dimensional real symmetric matrices, 〈�j , Aj,t〉 = trace (�j , Aj,t), which
denotes a trace scalar product of matrices �j and Aj,t , and Aj,t � 0 implies that the matrix Aj,t is
semidefinite.

Proof of Theorem 4.1:: It is noted that the constraint (22) can be equivalently expressed as J (f ,
r,αj,t) ≤ 0, where

J(f , r,αj,t) = sup
P∈P

CVaR1−εd

(
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j

)

= sup
P∈P

inf
αj,t∈R

⎧⎨⎩αj,t + 1
1 − εd

EP

⎡⎣(qj,1 −
t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t

)+⎤⎦⎫⎬⎭ (24)

By the stochastic saddle point theorem (Shapiro and Kleywegt 2002), themaximization andminimiza-
tion operations can be interchanged as follows:

J(f , r,αj,t) = inf
αj,t∈R

⎧⎨⎩αj,t + 1
1 − εd

sup
P∈P

EP

⎡⎣(qj,1 −
t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t)

+⎤⎦⎫⎬⎭ (25)
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Next, an SDP reformulation of the following worst-case expectation problem can be de-rived:

sup
P∈P

EP

⎡⎣(qj,1 −
t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t)

+⎤⎦ (26)

which canbe regardedas the subordinatemaximizationproblem in (25). Basedon the Lemma (Zymler,
Kuhn, and Rustem 2013), we obtain

inf
Aj,t∈ST+1

〈
�j ,Aj,t

〉
s.t. Aj,t ≥ 0

[d̃
�
j 1]Aj,t[d̃

�
j 1]

�
≥ qj,1 −

t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t ,∀d̃j ∈ R

T , j ∈ J, t ∈ T

(27)

The constraint (27) can be written as follows:

[
d̃

�
j 1
]
Aj,t

[
d̃

�
j 1
]�

≥ qj,1 −
t−1∑
l=0

rj,l�t − qmax,j + B�
t−1d̃j − αj,t , ∀d̃j ∈ R

T , j ∈ J, t ∈ T (28)

Furthermore, constraint (28) can be equivalently expressed as

Aj,t −

⎡⎢⎢⎢⎣
0

Bt−1

2
B�
t−1

2
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j − αj,t

⎤⎥⎥⎥⎦ ≥ 0, ∀j, t

Therefore, the worst-case expectation problem (26) can be reformulated into

inf
Aj,t∈ST+1

〈
�j ,Aj,t

〉
s.t. Aj,t ≥ 0

Aj,t −

⎡⎢⎢⎢⎣
0

Bt−1

2
B�
t−1

2
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j − αj,t

⎤⎥⎥⎥⎦ ≥ 0,∀j, t
(30)

Substituting (30) into (25) yields

J(f , r,αj,t) = inf
αj,t∈R

αj,t + 1
1 − εd

〈
�j ,Aj,t

〉

s.t. Aj,t ∈ ST+1,Aj,t ≥ 0

Aj,t −

⎡⎢⎢⎢⎣
0

Bt−1

2
B�
t−1

2
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j − αj,t

⎤⎥⎥⎥⎦ ≥ 0,∀j, t
(31)

and thus, the proof of Theorem 4.1 is completed. �
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Based on Theorem4.1, the optimization problem (DRCCP) can be reformulated into a problemwith
SDP constraints as follows:

(DRCCOM) min
f ,r,α,A

D =
I∑

i=1

T∑
t=1

([
ρi,1 +

t−1∑
l=0

�t

�xi
(fi−1,l − fi,l + ri,l − si,l)

]
�xi�t − fi,t�xi�t

vi

)

+ E

⎡⎣ J∑
j=1

T∑
t=1

(
qj,1 −

t−1∑
l=0

rj,l�t + B�
t−1d̃j

)
�t

⎤⎦ (32)

subject to constraints (6), (7), (11), (15), (19), (20) and

αj,t + 1
1 − εd

(�j ,Aj,t) ≤ 0, ∀j, t (33)

Aj,t −

⎡⎢⎢⎢⎣
0

Bt−1

2
B�
t−1

2
qj,1 −

t−1∑
l=0

rj,l�t − qmax,j − αj,t

⎤⎥⎥⎥⎦ ≥ 0, ∀j, t (34)

Aj,t ≥ 0,Aj,t ∈ S
T+1, ∀j, t (35)

Basedon the result (Zymler, Kuhn, andRustem2013),weget thatDRCCOMcanbe solvedefficiently.

5. Case study

We select a 13 km road of the Kwinana Freeway in the vicinity of Perth in Australia (refer to Figure 2).
We discretize the section into 26 cells with 500m for each cell. The road section covers eight on-ramps
and four off-ramps, and is one of the busiest sections in Perth. We select the duration from 6: 00am
to 10: 00am, which represents the peak hours. The on-ramps are located at cells 2, 5, 8, 9, 10, 16, 17,
25 and the off-ramps are located at cells 3, 7, 15, 26. The data of flow and density collected from loop
detectors are used to obtain the piecewise linear fundamental diagram for each cell. The associated
parameters are listed in Table 2.

Figure 2. Road map.
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Table 2. Model parameters.

Name of parameter Value

vi , i = 1, · · · , 24 27.7778m/s
vi , i = 25, 26 22.2222m/s
wi , i = 1, 3, 4, 6, · · · , 24 9.8029m/s
wi , i = 2, 5 9.7895m/s
wi , i = 25, 26 10.7830m/s
Ci , i = 1, 3, 4, 6, · · · , 24 1.6667 veh/s
wi , i = 2, 5, 25, 26 2.2222 veh/s
qmax,j , j = 7 120 veh
qmax,j , j = 1, · · · , 6, 8 60 veh
rmax,j , j = 1, · · · , 8 0.5500 veh/s
ρmax,i , i = 1, 3, 4, 6, · · · , 24 0.2300 veh/m
ρmax,i , i = 2, 5, 25, 26 0.3067 veh/m
�t 15 s
�xi , i = 1, · · · , 26 500 m

5.1. Deterministic model

The objective of the deterministic optimization model (DOM) is to find an optimal ramp metering by
minimizing the total travel delay with consideration of deterministic demand flows under triangular
fundamental diagrams. We use MATLAB R2019a with SeDuMi (Sturm 1999) solver and the YALMIP
interface (Löfberg 2004) to solve the proposedmodels in the numerical application. For the no control
model and DOM, we show the corresponding results on 11 June and 13 June 2018, in Figures 3 and 4,
respectively. The bar on the right side shows the size of mainline density that increases from bottom
to top. The lighter colour in the figures implies smaller value of density and better traffic condition
and vis versa. For the no control model on 11 June 2018, the total system delay with zero ramp delay
is 1074.6552veh-hr and the total system delay for DOM is 488.8045veh-hr and the associated ramp
delay is 174.8159veh-hr. On 13 June 2018, the total system delay for no control with zero ramp delay
is 1583.9869veh-hr and the total system delay for DOM is 1105.5529veh-hr and the associated ramp
delay is 474.3417veh-hr. By comparison, we can see that there are 54.5152% and 30.2045% improve-
ment for the total delay, respectively. Therefore, ramp metering can reduce the congestion on the
freeway, especially for the sections with on-ramps, and hence ramp metering is an effective strategy
to improve freeways operations.

Figure 3. Density (veh/m) for no control and DOM on 11 June 2018.
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Figure 4. Density (veh/m) for no control and DOM on 13 June 2018.

5.2. Disributionally robust chance constrained optimizationmodel

Now,we show the corresponding results of thedisributionally robust chance constrainedoptimization
model (DRCCOM),wherewe take into account ten scenarios (refer to Table 3 formore details) basedon
themeasured data of the demand flows. On the second column in Table 3, ‘1.00’ denotes the situation
where the demand flow d̃j,t is set as the mean demand flow dmean

j,t ; ‘0.96’ denotes the situation where

the demand flow d̃j,t is reduced to 0.96dmean
j,t ; ‘1.05’ refers to the situation in which the demand flow

d̃j,t is increased to 1.05dmean
j,t . A demandmultiplier more than 1 refers to the situation where the actual

demand flow is being underestimated and vis versa. Figure 5 shows themeanmainline demand,mean
on-ramp demands and mean out-going flows.

For comparison, the robust optimizationmethod (ROM)proposedbyChowandLi (2014) is adopted
in this paper, where we suppose that there is an uncertainty of ±0.05 associated with the demand
flows based on collected data from detectors and utilize triangular fundamental diagrams. This gives
d̃min
j,t = 0.95 ∗ d̃j,t and d̃max

j,t = 1.05 ∗ d̃j,t . First, we take into account the scenario 5, i.e. letting d̃j,t =
dmean
j,t . Table 4 shows the corresponding results. By analyzing, we can see that the performance of

DRCCOM is the best when εd = 0.95. For this case, the total delay and ramp delay for the DRCCOM are
731.6660veh-hr and 215.0415veh-hr, respectively. Compared to ROM, there are, respectively, 0.2442%
and 0.0670% improvement. Compared with DOM, the total delay of DRCCOM is less, but the ramp
delay is more than that of DOM. The performances of total delay of DRCCOM when εd = 0.90 or
εd = 0.97 do not outperform those of DOM and ROM. Furthermore, we can see that the ramp delay is

Table 3. Ten scenarios based on themeasured data of the demand flows.

Case Demand flows Control strategy

1 0.96∗d̃j,t Deterministic, robust, distributionally robust
2 0.97∗d̃j,t Deterministic, robust, distributionally robust
3 0.98∗d̃j,t Deterministic, robust, distributionally robust
4 0.99∗d̃j,t Deterministic, robust, distributionally robust
5 1.00∗d̃j,t Deterministic, robust, distributionally robust
6 1.01∗d̃j,t Deterministic, robust, distributionally robust
7 1.02∗d̃j,t Deterministic, robust, distributionally robust
8 1.03∗d̃j,t Deterministic, robust, distributionally robust
9 1.04∗d̃j,t Deterministic, robust, distributionally robust
10 1.05∗d̃j,t Deterministic, robust, distributionally robust
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Figure 5. Mean mainline demand, mean on-ramp demands and mean out-going flows.

Table 4. Total delay and ramp delay for ten scenarios.

Demand DOM ROM
DRCCOMwith

εd = 0.90
DRCCOMwith

εd = 0.95
DRCCOMwith

εd = 0.97

Total delay (veh-hr) Total delay (veh-hr) Total delay (veh-hr) Total delay (veh-hr) Total delay (veh-hr)
Ramp delay (veh-hr) Ramp delay (veh-hr) Ramp delay (veh-hr) Ramp delay (veh-hr) Ramp delay (veh-hr)

0.96∗dmeanj,t 332.6767 338.9177 334.7076 328.2172 329.8285
40.0145 48.1446 48.5633 45.3767 42.9587

0.97∗dmeanj,t 411.3381 420.2148 417.3771 410.2358 413.6383
82.0282 94.3712 89.4254 85.7465 83.1289

0.98∗dmeanj,t 502.4933 500.5120 503.7418 498.2489 500.9168
102.9199 102.9337 110.8222 105.0563 102.9788

0.99∗dmeanj,t 599.4085 602.6364 605.5120 598.6296 603.5045
185.6659 208.0696 202.9336 196.4971 186.2164

1.00∗dmeanj,t 734.4483 733.4570 736.4828 731.6660 733.4828
213.7042 216.4920 218.5041 215.0415 214.7027

1.01∗dmeanj,t 909.7404 906.5402 915.7383 896.2559 907.6203
346.3851 357.6635 366.2991 356.7829 350.5417

1.02∗dmeanj,t 1174.9983 1081.2249 1168.0312 1084.1379 1164.1543
397.6578 446.8358 429.1136 418.0353 408.7932

1.03∗dmeanj,t 1338.1348 1336.3029 1344.1208 1304.6056 1321.0637
503.1153 564.3454 592.6797 551.3854 529.0421

1.04∗dmeanj,t 1569.6749 1521.8225 1581.2552 1555.3102 1571.8093
629.6253 659.5434 663.7006 658.4050 646.6241

1.05∗dmeanj,t 1845.0960 1805.6598 1838.0398 1798.5056 1824.0285
727.3990 725.9099 787.2781 765.9304 743.8254

increasing with the value of εd decreasing, which is consistent with our theoretical analyses because
smaller εd impliesmore probability of violation of constraint in terms of that the waiting queue length
is longer than the maximum queue on an on-ramp.

Table 4 also shows the total delay and ramp delay over 10 scenarios for the three different control
strategies. We can see that the total delay and rampdelay increasewith the demand increasing for the
three control strategies. In particular, the total delay of DRCCOM when εd = 0.95 is less than those of
ROM for the cases that d̃j,t �= 1.02 ∗ dmean

j,t , 1.04 ∗ dmean
j,t . Compared toDOM, the total delay of DRCCOM

when εd = 0.95 is less than those of DOM for all the 10 different scenarios, while the ramp delay of
DRCCOM shows an opposite trend. Moreover, the performances of total delay and rampdelay of DOM
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are better than those of DRCCOM when εd = 0.90 for most cases. When εd = 0.97, the total delay of
DRCCOM is less than those of DOM for most cases, but the ramp delay is longer than DOM. This is
reasonable because the objective function is to minimize total delay rather than ramp delay. When
more vehicles are holding on on-ramps, total delay may reduce but ramp delay will increase.

6. Conclusion

A distributionally robust chance constrained optimizationmodel is presented in this paper to address
the rampmetering problem with uncertain demand flows. The model is formulated as a semidefinite
programming using the Worst-Case Conditional Value-at-Risk (WCVaR) constraints to approximate
distributionally robust chance constraints. Given partial information (such as mean and covariance
matrix) of stochastic demand flows and the triangular fundamental diagrams, an optimal rampmeter-
ing strategy can be obtained by minimizing the total delay of mainline and on-ramps. The associated
results of three different rampmetering strategies, i.e. deterministic optimization model, robust opti-
mizationmodel anddistributionally robust chance constrainedoptimizationmodel, arepresentedand
compared. The results show that, considering the uncertainty encountered by the systemover a range
of scenarios, distributionally robust optimization is an effective and useful method to control the total
delay of the system and mitigate traffic congestions. The results also show that the distributionally
robust optimization ismore effective inmanaging the total systemdelay. Further studies will take into
account the distributionally robust optimization model under set-valued fundamental diagrams and
the route choice behaviour of drivers.
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