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Abstract—This paper concerns predictions of freeway traffic
flow under non-recurrent events using multivariate machine
learning models, including the multilayer perceptron network
and the one-dimensional CNN long short-term memory network.
The machine learning architectures and loss functions for train-
ing neural networks are presented. The study region is a portion
of the Kwinana Freeway northbound in Perth, Western Australia.
The study dataset, obtained by matching the timestamp of all
available data, has various features, including traffic volume (flow
rate), speed, density and road incident. Using the root mean
squared error and mean absolute error, results from the two
learning models are compared to the baseline model to determine
the suitable model for traffic prediction under non-recurrent
events.

Index Terms—Traffic prediction, Non-recurrent events, Mul-
tiLayer Perceptron, Convolutional Neural Network, Long short-
term memory.

I. INTRODUCTION

Predicting future traffic flow conditions is essential in man-
aging traffic operations and providing advanced traveller infor-
mation. Uncertainties in traffic conditions result in high travel
time variability, traffic congestion, delays, and greenhouse gas
emissions. Therefore, traffic flow prediction has been one of
the critical research areas in transport engineering over the last
two decades.

In literature, prediction models comprise statistical models
and artificial neural networks (ANNs) using two types of
data whose order matters, including sequential and time-series
data. There are two types of statistical models, parametric
and non-parametric. Various parametric models based on the
Auto-regressive Integrated Moving Average model (ARIMA)
have been proposed for short-term traffic prediction [1]–
[6]. Machine learning models may be classified into four
classes: supervised, semi-supervised, unsupervised, and rein-
forcement. The supervised learning algorithm involves classi-
fication, regression and forecasting. It analyses available data
to determine the correlations and relationships, concludes a
known dataset, and identify data patterns. Examples of popular
supervised learning algorithms are Naı̈ve Bayes Classifier
Algorithm, Support Vector Machine Algorithm, Linear Re-
gression, Logistic Regression, Random Forests, and Nearest
Neighbours. For reinforcement learning, different options and
possibilities are explored using a given set of actions, parame-
ters and end values (hyperparameters) to determine the optimal

one. Similarly, the semi-supervised learning model combines
the data with essential information and other data lacking.
Unlike the supervised and the semi-supervised algorithms, the
unsupervised learning algorithm does not determine the data
structure but identifies the data pattern using clustering and
dimension reduction techniques. The standard and popular
unsupervised learning algorithm is the K Means Clustering
Algorithm.

For time-series data, a recurrent neural network (RNN), a
type of artificial neural network (ANN), is recommended [7].
Most RNN learning algorithms have been refined to improve
their accuracy for real-world problems. In general, various
RNN models have been designed based on machine learning
approaches, including the Multilayer Perceptron (MLP), the
Convolutional Neural Networks (CNN) and the Long Short-
term Memory (LSTM) networks. The MLP is a simple case of
the feed-forward ANN, comprising input, hidden, and output
layers. The method allows for more than one hidden layer,
referred to as the depth of a neural network. Like the MLP,
CNN also comprises an input and output layer between which
lies a series of hidden layers that can be convoluted, pooled
or fully connected for feature identification. These convolution
layers use filters to record characteristics of multi-dimensional
data. A pooling layer reduces dimension in the data and can
thus provide an abstract representation of the data. A Long
Short-term Memory (LSTM) network is a particular case of
RNN, which utilizes hidden components such as memory
cells. LSTM is beneficial in studying long time-series data
and making forecasts considering autocorrelations [8].

Many machine learning models have been proposed for
time-series forecasting problems such as stock markets [9],
wind speed [10], solar radiation [11], and more recently in
forecasting competitions [12]. A deep reinforcement learn-
ing model has been proposed for traffic prediction [13]. To
deal with variability and non-linearity of traffic flow, many
researchers have combined machine learning models with
other data mining methods such as the k-nearest neighbour
algorithm [14], [15] and Bayesian model averaging algorithms
[16]–[18] for traffic flow prediction. The critical problems in
machine learning models are overfitting of the training set and
extended training time. For preventing overfitting model, train-
ing with more data, using early stopping to halt the training of
the network at the right time and using a suitable number of
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Fig. 1. Machine learning workflow.

epochs are required. Recently, research has been focused on
predicting multiple outputs with multiple inputs using the data
set with various classes (features). As unexpected accidents on
the freeway significantly affect road capacity, road incident
detection is required for traffic operation. Recently, research
has focused on the development of a deep learning algorithm
to detect vehicle movement and traffic accidents in tunnels [19]
from time series of images from CCTV. A little attempt has
been made to predict traffic flow under non-recurrent events
using a multivariate learning model with multiple inputs.
Therefore, the deployment of machine learning models is a
challenging task.

This paper predicts freeway traffic flow under non-recurrent
events using multivariate learning models based on the mul-
tilayer perceptron and the one-dimensional CNN long short-
term memory network. Using the root mean squared error,
results obtained from these models are compared to the
baseline model, which is the average traffic variables from
the training set (Fig. 10) to find the suitable model for the
freeway traffic predictions under non-recurrent events. A 1-
min data set is generated from the matching timestamp of the
1-min traffic flow data set and the 15-min incident data set.
As shown in Fig. 2, the study region, the red curve, is a road
segment of the Kwinana Smart Freeway from Cranford Avenue
to Manning Road, which experiences severe congestion and
stop-start conditions due to traffic incidents.

The work is structured as follows. Section II concerns
Methodology. Section III describes the study area and available
data sets. Results and discussion are given in section IV. The
conclusion is given in section V.

II. METHODOLOGY

This section concerns building multivariate machine learn-
ing (ML) models based on either the MLP or the one-
dimensional CNN long short-term memory neural networks to
predict traffic flow rate, speed and density under non-recurrent
events. As shown in Fig. 1, the machine learning workflow
comprises preparing the data, pre-processing, model training,
and model testing.

A. Preparing data and pre-processing

Constructing a predictive learning model is a complex pro-
cess involving getting the correct data, cleaning it and creating
useful data features, testing different learning algorithms, and
validating the model. Failure in preparing the relevant data
will result in predictive failure analysis.

In this study, the time series data has n observations
(samples) and four features (classes) denoted by

X = (X1, X2, X3, X4)ni=1,

where X1, X2 and X3 denote traffic flow rate, speed and
density, and X4 is a traffic incident feature. As time-series
traffic flow data and incident data have different scales, feature
scaling is required. Here, we apply the min-max normalization
linearly transforms xc

i to ξci , 0 ≤ ξ ≤ 1:

ξci =
xc
i − minc

maxc − minc
, c = 1, ..., 4. (1)

where minc and maxc are the minimum and maximum values
in Xc, where Xc is the set of observed values of xc

i .

Fig. 2. Study region (red curve) between the Cranford Avenue on-ramp and
the Canning Highway northbound off-ramp.

The study data with 429,120 samples are split into the
training set (70%) and the test set (30%).

B. Model training and testing

Grid searching is used to find the optimal set of hyperparam-
eters for each learning model: the MLP model (learning rate,
drop out rate and dense units) and the 1-D CNN LSTM model
(filters and kernel size, learning rate. and drop out rate). Early
stopping is also applied for the right time to train the model.
The models were fully trained using the Adam optimizer [20],
where the number of hidden layers was chosen empirically to
improve the overall performance.
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TABLE I
RMSE AND MAE FOR EACH CASE OF THE TRAINING AND THE TEST SETS.

Parameter
Baseline MLP CNN-LSTM

RMSE MAE RMSE MAE RMSE MAE
Train Test Train Test Train Test Train Test Train Test Train Test

Speed 10.2598 9.8137 5.4993 6.1823 5.2311 5.7965 2.753 2.6917 5.891 6.7006 2.0547 2.0801
Flow Rate 11.0281 11.7503 6.5284 6.2812 3.5864 3.5861 4.1855 4.639 2.8134 2.8403 4.5135 5.2321

Density 24.1516 24.419 11.144 10.956 7.3215 6.9089 5.5157 5.4881 6.8161 6.3472 3.6161 3.6738

Fig. 3. Squared error loss, L2 = (y − ŷ)2, for the training and the test
datasets in each ML model: the MLP model (top) and the 1-D CNN LSTM
model (bottom).

Fig. 4. MLP architecture.

Fig. 5. 1D-CNN LSTM architecture.

For model testing, the goodness of each learning model is
assessed in terms of accuracy and efficiency by the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE).
The RMSE and MAE, determining the deviation around the
mean value predicted by the model, are calculated by

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

and

MAE =
1

n

n∑
i=1

|yi − ŷi|, (3)

respectively. Lower values of the RMSE and the MAE signify
a better model fit as the level of deviation is low. As shown
in Table. I, the root means squared errors (RMSEs) and the
mean absolute errors (MAEs) of the training dataset are larger
than those of the test dataset, which are reasonable as the ML
model is better at predicting the known dataset that it has
learned than the unknown (the test set).

The MLP and 1-D CNN LSTM models with a batch size
of 30 are fit over 20 epochs, as shown in Fig. 3. The model
architectures of the MLP and the 1-D CNN LSTM are thus
obtained and are shown in Fig. 4 and Fig. 5, respectively.

III. STUDY AREA AND STUDY DATASET

The study area is a major arterial, link 9, of the Kwinana
Freeway northbound in Perth, Western Australia. It is between
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the Cranford Avenue on-ramp and the Canning Highway
northbound off-ramp as shown in Fig. 2. The 1-min study data
is generated by matching timestamp between 1 January and
25 October 2018 of the 15-min road incident data with that
of the 1-min traffic flow data of flow rate, speed and density.

A. Non-recurrent event datasets

The data of road incidents affecting traffic capacity during
the study period come from the following two sources

• MRWA
– Weather flood/fog hazard
– Heavy/moderate/stand still Jam
– Major and minor accidents
– Road closure

• Web emergency operation centre (WebEOC)
– Break down/tow away
– Road crash
– Debris/trees/lost loads
– Vehicle fire
– Animal/livestock
– Pothole/road surface damage

Fig. 6. Frequency of road incidents on the study region.

Fig. 7. Locations in latitude and longitude coordinates of traffic incidents and
incident duration on the study region.

Fig. 8. Box plot showing distribution and skewness of traffic variables
associated with road incidents on the study region.

Breakdown, road crashes, and road debris are common
incident types in this link. Fig. 6 shows the study region’s
frequency of road traffic incidents. Locations in latitude and
longitude coordinates of traffic incidents are shown in Fig. 7, in
which a bigger circle size indicates a longer incident duration.
As shown in Fig. 8, the box plot shows the distribution and
skewness of traffic data associated with road incident types.
It is noted that traffic capacity is associated with road crashes
and breakdowns.

B. Traffic data

Traffic data of flow rate (volume), speed and density is
provided by Main Roads Western Australia (MRWA) between
1 January and 25 October 2018. It is 1-min dataset with
429,120 observations and 3 features including traffic flow rate
(veh/min), speed (km/hr) and density (veh/km).

Fig. 9 shows fundamental traffic flow diagrams on the study
road, i.e., the relationship of the speed with the flow rate,
the relationship of the flow rate with the density, and the
relationship of the speed with the density, respectively.

C. The study dataset

Road incident message data were first converted into
Boolean type data, being one if a road incident exists and
zero otherwise. The study data is then obtained by matching
the timestamp of the traffic data and the boolean incident data.
Fig. 11 shows the observed traffic flow under road crash on
18 July 2018 between 12:51 and 14:24. It indicates that road
crash reduces traffic capacity.

IV. EXPERIMENTAL RESULTS

Traffic variables under a long-period road crash on Wednes-
day 18 July 2018, between 12:51 - 14:24, are predicted using
the proposed learning models, and are compared with the
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Fig. 9. Fundamental diagrams showing relationship of traffic variables: (a) speed (km/hr) and volume (veh/min); (b) flow rate (veh/min) and density (veh/km);
(c) speed (km/hr) and density (veh/km).

Fig. 10. Average traffic profiles of flow rate, speed and density during the
study period.

Fig. 11. Observed traffic flow rate (top), speed (middle) and density (bottom)
with road crash during the prediction period.

results of the baseline model which is the average traffic
variables from the training set in Fig. 12.

Fig. 13 and Fig. 14 present predictions of flow rate, speed
and density obtained from the MLP and the 1D-CNN LSTM
networks, respectively. It is noted that

• Predictions of traffic flow rate, speed and density obtained
from both models are reasonable. Compared with the
observed data, the proposed machine learning models
give the general pattern and trend of the traffic under non-
recurrent events. However, predicted traffic flow rates are
not exactly equal to the observed data, especially around
the incident.

• RMSEs in estimating the flow rate, speed and density in
each case of the training and the test sets obtained from
the 1-D CNN LSTM model are much smaller than those
obtained from the baseline and the MLP models.

Fig. 12. Baseline predictions of traffic flow rate (veh/min/lane), speed (km/hr)
and density (veh/km/lane) with a road incident (∗) and its impact on traffic
parameters (a solid green line).

V. CONCLUSIONS

Two multivariate ML models were designed based on the
multilayer perceptron and the one-dimensional CNN long
short-term memory networks. Traffic flow predictions under
non-recurrent events using the proposed ML models with
four inputs and three outputs have been made. Both ML
models can accurately predict traffic flow under non-recurrent
circumstances compared with the baseline model. The RMSE
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Fig. 13. MLP predictions of traffic flow rate (veh/min/lane), speed (km/hr)
and density (veh/km/lane) with a road incident (∗) and its impact on traffic
parameters (a solid green line).

Fig. 14. 1D-CNN LSTMs predictions of traffic flow rate (veh/min/lane), speed
(km/hr) and density (veh/km/lane) with a road incident (∗) and its impact on
traffic parameters (a solid green line).

and MAE of the proposed ML models are much lower than
those obtained from the baseline model. Compared to the MLP
model, the 1-D CNN LSTM model gives better predictions of
all traffic parameters.

As traffic flow is disrupted and delayed around on-ramp
and off-ramp areas, future research will consider the non-
recurrent event and congestion due to lane changes to develop
a deep time-delay neural network for predicting traffic flow
characteristics. A deep traffic congestion model will also be
developed for predicting traffic congestion. This congestion
model will provide information on congestion propagation on
the study road to improve traffic prediction.
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