Emerging Issues for Road Construction and Maintenance – A Futuristic View

In the coming decades the design, delivery, and maintenance of roads will be increasingly influenced by issues related to sustainability (See Table 1), presenting a range of opportunities for new and improved approaches. An example of this is the impact of climate change and associated extreme weather events, such as the extensive flooding in January 2011 in Queensland, Australia. Other examples include diminishing access to road construction supplies (such as aggregate), water scarcity, and the potential for increases in oil and electricity prices. Many of these considerations have not had a noticeable influence on roads in the past and will require new thinking and strategies.

Given that roads typically have a design life of 20 to 40 years, with bridges being designed for up to 100 years, the level of consideration of future trends related to environmental and carbon impacts, economic risks, and social movements associated with roads will have a significant impact on their long-term associated costs and future.

Table 1: Potential increasing pressures on the future of roads 1,2

<table>
<thead>
<tr>
<th>Issue</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>Rising price of oil</td>
</tr>
<tr>
<td>Employment and skill shortages</td>
<td>Increased community action</td>
</tr>
<tr>
<td>Water scarcity</td>
<td>Decreasing access to resources</td>
</tr>
<tr>
<td>Increased road freight</td>
<td>Population growth</td>
</tr>
<tr>
<td>Maintenance costs</td>
<td></td>
</tr>
</tbody>
</table>

In Australia, such new strategies will need to take into account the variety of needs resulting from the country’s geographical and population diversity, expansive road networks, road freight requirements and relatively small population base.

For instance, in Australia there is some 814,000 kilometres1 of road network that spans a wide range of geographic areas. There are also significant economic considerations, considering that the cost of road construction in Australia is estimated to be in the order of $17.5 billion per year; and maintenance costs in the order of $5 billion per year and rising.

The good news is that there is a bright future for roads. Road building is inherently an efficient practice that seeks to minimise costs related to construction and maintenance, with a range of practices that can be called upon for the basis of strategies to address current and future environmental issues. Such practices include:

- Balancing earthworks to optimise cut and fill
- Utilising local sources to minimise the import of materials
- Stabilising additives to adapt local marginal materials
- Ensuring impacts on the local environment and biodiversity are appropriately managed and revegetated
- Road water runoff capture and treatment
- Optimising pavement thickness for anticipated conditions and loads
- Effective scheduling of associated capital expenditure and rapid delivery

These practices have enhanced Australia’s extensive road infrastructure over the last two decades and will be a key part of road building in the coming decades as part of the response to a changing climate. There are also a number of emerging innovations that are promising significant reductions in environmental pressures, such as:

- Technological advances in the asphalt process to create a “warm mix” reducing emissions and toxic fumes
- In-situ stabilisation reducing raw aggregate and energy requirements (foamed bitumen trial - Qld DTMV), and bauxite and alkali activation technology

- Recycling of aggregates and concrete specifications such as the “Queensland Main Roads Specification MRS35 – Recycled Materials for Pavements”2

- The use of residues from the production of bauxite as a road base material in Western Australia1

- Innovations that sequester carbon are emerging with prototype solutions for concrete and aggregates

- The use of waste plastic and glass in road construction, supported by the Packaging Stewardship Forum and NSW/Transport Road and Maritime Authority2

To date innovations in sustainable road construction practices have been given little incentive, with technology focused on engineering design for speed and safety of roads. Internationally, road networks are entering a new chapter in formation and function – the next “wave of innovation” – including for example natural rubber being used to bind marginal (local) material, plant based bitumen alternatives, pavements that generate energy, and roads that incorporate recycled plastic bags.

Alongside such innovation, the coming decade will see a change in focus from “environmental management” that minimises footprint and ecological disturbance, to a second generation of environmental reporting requiring a focus on issues regarding availability (alternative sources) and transport of resources required (reducing greenhouse gas emissions), to construct and maintain roads. Such a shift in focus is imperative and urgent to give road authorities time to create road networks that are resilient to significant environmental and resource related challenges in the future.

Acknowledgements
This article has been developed with funding and support provided by Australia’s Sustainable Built Environment National Research Centre (SBEnrc) and its partners. Core Members of SBEnrc include Queensland Government, Government of Western Australia, John Holland Parsons Brinckerhoff, Queensland University of Technology, Swinburne University of Technology and Curtin University.

1 Note: Information, recommendations and opinions expressed are not intended to address the specific circumstances of any particular individual or entity. The table has been produced for general information only and does not represent a statement of the policy of the participants of the stakeholder workshops, the SBEnrc, or the SBEnrc partner organisations.

2 Source: “Drawing on the findings of SBEnrc Stakeholder Workshops, hosted by Western Australian Main Roads in Perth on 12 July 2011, and QLDC Department of Transport and Main Roads in Brisbane on 29 September 2011, facilitated by Curtin University and QUT.”

