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Discrete Firefly Algorithm for Scaffolding
Construction Scheduling

Lei Hou'; Chuanxin Zhao?; Changzhi Wu®; Sungkon Moon*; and Xiangyu Wang?®

Abstract: Scaffolding activities involve a considerable amount of resource input and effort, particularly in very large scale and complex
projects. Based on one of the present research gaps identified from literature review that very limited research emphasis has been placed on the
impact of design of time-cost optimization in modular scaffolding construction process, this study aims to formulate a feasible multiobject
discrete firefly algorithm (MDFA) for optimizing scaffolding project resource and scheduling schemes. The proposed MDFA has been tested
under a scaffolding-specific case and a generic construction project case and manifested that it can produce accurate and effective solutions to
assist scaffolding planners in developing practical project schedules and addressing complex time-cost trade-off challenges. DOI: 10.1061/
(ASCE)CP.1943-5487.0000639. © 2016 American Society of Civil Engineers.
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Introduction

Low productivity has become one of the prevailing issues in the
worldwide construction projects, especially in the complex con-
struction projects such as oil and gas, mining and infrastructure
(Wang et al. 2014; Hou et al. 2014). Construction management ob-
jectives are generally concerned with the adherence to as-planned
resources and schedule. As a temporary and commonly used fa-
cility, scaffolding provides a platform for material transfer and sus-
taining workers working at height. Scaffolding construction,
despite less significance against the overall construction activities,
indeed involves a considerable amount of resource input and effort,
particularly in very large scale and complex projects (Kumar et al.
2013). It is essential on modern construction sites for the erection of
new buildings, as well as for modification and maintenance works
and are among others used for plant construction, vehicle construc-
tion and shipbuilding. Hereby the multiform operation of erection
and disassembly of scaffolds is connected with certain levels of
productivity and hazards. Therefore, the relationship between
careful planning and a coordinated performance in scaffolding is
especially important. It is expected that as the growing complexity
of industrial projects (Wu et al. 2014a), there is a growing demand
of studying the scaffolding activities and associated issues that can
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on average lead to a very large amount of capital and labor input
against the overall project. In addition, one engineering, procure-
ment, and construction management firm found that an investment
of scaffolding budget against the total project cost, which at the
moment is approximately 12—-15%, is no longer sufficient. Scaf-
folding also has a very decisive impact on determining whether
the following construction can stick to the original schedule. In
other words, the scaffolding activities are linked with other impor-
tant activities in terms of the critical path. Therefore, optimization
and planning of scaffolding schedule is one of the critical issues to a
successful execution of construction work. To address these issues,
an effective approach of leveraging resources in scaffolding activ-
ities and optimizing the schedules should be produced.

An overview from real project practice shows that erecting scaf-
folding structures presents critical concerns in terms of health and
safety, schedule, and work productivity. Unfortunately, the related
research and studies have only looked into very limited fields, for
instance, safety accident analysis (Ratay 2004; Rubio-Romero et al.
2013), building information modeling (BIM) supported occupa-
tional health and safety design (Kim and Teizer 2014; Taiebat
2011), automated scaffolding design (Kim and Teizer 2014), esti-
mating and planning tool of scaffolding (Kumar et al. 2013), and
prediction of the type of scaffolding system (Kim and Fischer
2007). Apart from these, other research studies are more focused
on tentatively applying some of the conceptual frameworks to help
formulate principles or approaches that might be able to bridge
these gaps (Koulinas and Anagnostopoulos 2012; Heon Jun and
El-Rayes 2011; Xu et al. 2013; Wu et al. 2014a). Looking into the
nontraditional projects, the scaffold components can come in many
forms that allow for all types of frameworks to be created depending
on the shape and size needed. Those frameworks can be either sup-
ported scaffolds (such as independent scaffolds, mobile scaffolds,
frame and modular scaffolds) or suspended scaffolds (like single pole
scaffolds, multipoint scaffolds, and multilevel scaffolds). Consider-
ing the design, shape, and location of the building or other structure it
has to be decided which type of scaffold is appropriate. The scaffold
system that is most adaptable to the contour of the building or other
structure has to be chosen, particularly if a modular scaffold is used.
Besides, standardized procedures of instructing the scaffolding prac-
titioners about how to plan and estimate the scaffolding schedules in
diversified project scales are still deficient, which leaves a probable
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Fig. 1. Number of different scaffolding types (images by Lei Hou): (a) close-up tube and coupler scaffolding; (b) suspended scaffolding; (¢) combined

scaffolding forms

risk of cost and schedule overruns, as well as an actual need of the
project managers to understand scaffolding activities and scheduling
issuesfor. With this in mind, this study aims to bridge one of the
present research gaps and give the feasible solutions to produce
the appropriate project resource and scheduling schemes by formu-
lating a series of unique mathematical models and solving them by
the advanced discrete firefly algorithm (FA).

This paper is organized as follows. The literature section states
an extensive review of the time-cost optimization approaches and
algorithms, followed by a formulated multiobjective mathematical
model that based on the existing FA. Real project-based case stud-
ies are then presented as a testbed for studying the benefits of using
such an improved algorithm, and for the first time, in addressing the
real scheduling problem.

Literature Review

On the one hand, because of the huge difference across various
scaffolding structures (Fig. 1), time consumed on the processes
such as erecting and dismantling could significantly vary. To illus-
trate, because of the application of premeasured components and
quick connection techniques (Rogan et al. 2000), erecting and dis-
mantling a modular scaffolding system could save up to 70% of
time as against constructing and decommissioning a traditional
scaffolding system that consists of tubes and couplers. Conversely,
as compared with the tubular scaffolding, a noticeable advantage of
modular scaffolding systems is that it is easy to handle on the site,
which can spare workforce, resource, and effort. Notwithstanding,
a modular scaffolding system is in general much pricier than a tra-
ditional scaffolding system, constructing and decommissioning a
modular scaffolding system in countries where workforce plays
the most cost-intensive part of the business is not likely to harm
the project economy. The genuine downside of the state-of-the-
art modular scaffolding systems is the missing adaptability to dif-
ferent shapes of structures (Jackman et al. 2008). By comparison,
tube and coupler scaffolds can be connected to form various struc-
ture patterns. Besides, frame scaffolding and system scaffolding
(two types of the commonly applied modular scaffolding system)
are plagued with inconvenience for stock and transport, given the
size and weight of the preassembled scaffolding modules.

Still it is recommendable to own a small amount of tubular scaf-
folding for areas with difficult access possibilities and to tie in with
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the modular scaffolds; however, there is an overall tendency to use
more modular system scaffolding in a global context (Crapo et al.
2008; Viunov 2011). A possible solution to overcome the afore-
mentioned challenges would be making use of lighter materials
and designing more flexible structures for modular scaffolding
systems. For example, the use of aluminum rather than steel or tim-
ber; tailor designing or fabricating varying modular components; or
storing scaffolds as close as practical to the work area in order to
minimize the distance over which loads are manually moved, clear-
ing access ways for transportation. Also, mechanical aids such as
cranes, forklifts or trolleys could be leveraged to handle scaffolds
whenever it is possible.

In any construction project, let alone the scaffolding construc-
tion, time and cost are always the most critical and intricately
concomitant key performance indicators (KPIs). An input of more
resources may speed up the progress of construction, but compro-
mise the total cost when adding up the workforce, resources, and
machinery expenditure. Because of a limited amount of research
studies on selecting options with corresponding time and cost to
complete highly productive scaffolding activities, the scaffolding
scheduling practice is always confronted with uncertainty and a
lack of experience to follow. The emphasis of this study is thus
placed on probing into a solution of allocating multiple inter-
restrained resource types for each modular construction and
obtaining optimal time and cost allocation plans. The time-cost
trade-off problems (TCTPs) are multiobjective optimization prob-
lems (Feng et al. 1997; Wu et al. 2014a). Targeting on the project
scheme options under the constraints of both project duration and
project cost, TCTPs are to screen out the best fit trade-offs to com-
plete an activity. Given the uncertainty of project implementation,
i.e., scheduling randomness and activities fuzziness, Ke and Liu
(2010) tested diverse algorithms under a software project context
and proved that a hybrid intelligent algorithm adapted from genetic
algorithm and random fuzzy simulation can solve the software de-
velopment costing issues (Huang et al. 2009). To help project plan-
ners develop practical project schedules without impacting project
quality, Kim et al. (2012) proposed a mixed integer linear program-
ming model that took into account the potential quality loss cost in
TCTPs, and evidenced that this model could reduce circa 65%
excessive crashing activities in construction project coordination.
Resource-constrained scenarios have also been regarded as multi-
mode scheduling problems. Li and Zhang (2013) proposed an ant
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colony optimization (ACO) approach and manifested that against
other metaheuristic methods; this approach is particularly benefi-
cial for real construction project paradigms that are subject to
renewable and nonrenewable resource constraints. Scheduling
problems are normally concerned with construction in flowshop,
such as queries scheduling and makespan, which are one of most
difficult nondeterministic polynomial (NP)-complete problems.
Allahverdi and Al-Anzi (2006) and Zhang et al. (2007) compared
a tabu search (TS) approach with other types of algorithms such as
particle swarm optimization (PSO) and earliest due date (EDD)
heuristics, and computationally evidenced this approach is in prin-
ciple more effective and less error prone when addressing the small-
job-quantity flowshop assembly problems. With regard to problem
solving for continuous optimization problems across a broad range
of application areas, a simulated-annealing (SA) algorithm was
proposed by Kirkpatrick et al. (1983). According to Varadharajan
and Rajendran (2005), SA seeks to obtain more Pareto-optimal and
computation-economic solutions in the nondominated multiobjec-
tive genetic local search against algorithms such as elitist nondo-
minated genetic (ENG) (Suresh and Mohanasundaram 2006) and
gradual priority weighting (GPW) (Chang et al. 2002). Finally,
population-based approaches incorporating different approaches
for generating and refining schedule populations have emerged
in the last 15 years, such as genetic algorithm (GA) or hybrid ge-
netic algorithm (HGA) (Pezzella et al. 2008; Gonalves et al. 2005),
ant colony optimisation (ACO) (Merkle et al. 2002), particle swarm
optimization (PSO) (Jarboui et al. 2008), differential evolution al-
gorithm (DEA) (Pan et al. 2008), and artificial bee colony (ABC)
(Karaboga and Basturk 2007). These population-based algorithms
are on average more computationally effective for local optimum
search in both continuous and discrete multiobjective scheduling
problems, thus gradually taking over the previous algorithms. FA
is a relatively new algorithm that was first proposed in year 2010.
Since then, numerous research studies have underpinned its ad-
vantages in well dealing with a wide range of practical applica-
tions over the aforementioned algorithms. The use of FA had
satisfactory characteristics in sensitivity, calculation speed, accu-
racy, convergence, and specificity in the areas of image classifi-
cation (Senthilnath et al. 2011), disease diagnosis (Horng et al.
2012), multiple traveling route selection (Palit et al. 2011; Jati and
Suyanto 2011; Yousif et al. 2011), and so on (Yang and He 2013;
Yang 2010; Marichelvam et al. 2014). Kazemzadeh and Azad
(2011) and Gandomi et al. (2013) concluded that FA outperformed
ABC and PSO in terms of obtaining global optimum results and
solving highly nonlinear and multimodal design problems, such
as engineering antenna design (Basu and Mahanti 2011; Chatterjee
and Mahanti 2012; Zaman and Matin 2012). As previously men-
tioned, scaffolding construction scheduling is one of the difficult
discrete optimization problems because of various uncertainties
and varying resource constrains. It might be worth contributing
to the knowledge of scheduling optimization by looking into
whether an intelligent FA algorithm could address such a problem
and what level of effects could be attained. In this regard, the cur-
rent study establishes a mathematical model for this specific modu-
lar scaffolding assembly context, proposes a discrete self-adapted
FA that reflects several resource constraints, and demonstrates its
robustness in producing effective time-cost recommendations.

Resource-Constrained Scaffolding Scheduling

In a large construction site, scaffolds across areas are of different
structures and operated independently. This can incur varied labor
productivity of operating different scaffolding types (weight/time).
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The construction sequence of different scaffolds across different
areas is subject to a number of precedent constrains as required, as
well as the allowable resources such as available workforce. When
building a mathematical model, these factors have to be taken into
account. The subsequent section states a multiobjective mathemati-
cal model specifically designed for the aforementioned cross area
scaffolding scenario, and explains the notations within the model.
One of the objective functions of the model pursues the least overall
cost of constructing all the scaffolds, while the other ensures the
least time consumption and the minimum fluctuation of resource
usage to complete scaffolding. In the described scenario, this study
supposes that the construction site has been divided into M zones.
For zone i, a modular scaffolding is required to be selected from
J; options. For a list of mathematical symbols and variables used in
subsequent sections, see ‘“Notation” section.

Decision Variables

The decision variables are x;?l; y;?}; Sy Cos J=1,....J;
m=1,...,M; and t =1, ...,T. The variable x’j” is introduced
to stand for the modular options in different zones, and y is
introduced to show whether modular j is being processed in zone

m at time ¢, i.e.
. { 1 if modular option j is selected at zone m
0 otherwise
” { 1 if modular option j is selected at zone m at time ¢
Vi = .
" 0 otherwise

the decision variables S,, and C,, are starting time and completing
time for the scaffolds at zone m.

Objective Functions

The first objective for scaffolding construction is to minimize
project duration

Fl:SM+| (l)

The second objective is to minimize total project cost. To build
different scaffolding in different zones, different cost will be
caused. This cost can be calculated as

Fo=)_ ) cpxy @)
j m

In addition to time and cost, fluctuation of resource usage
should also be included. For example, throughout scaffolding pro-
cess, the numbers of workers at different times should be as close as
possible. The resource usage r;, of resource k at time ¢ can be com-
puted as

CED IO (3)
J m

Then, the fluctuation of all resource usage (fluctuations of resource
use; in project, it generally means undesirable cyclic of hiring and
firing) can be measured by

YT e
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Precedence Constraints

In practice, scaffolding in some zones must be completed before
scaffolding in other zones. The authors introduce a network
(A, V) to accomplish this precedence relationship where A =
{0,1,...,M + 1} and edges V are determined through the prec-
edence relationship. Node 0 and node M + 1 are two dummy nodes
to represent starting and completing. The project period is supposed
to be [0, 7]. To ensure scaffolds built according to the given prec-
edence, the following inequalities should be satisfied:

S;>Ci+1, Y(ij)eV (5)

Resource Constraints

To build and lift modular scaffolds, many resources are required,
such as workforce and cranes. We suppose that K resources are
required. Throughout the entire project period [0, T, the availabil-
ity of resource k is restricted to be between 0 and the upper resource
limit Uy, k =1, ..., K. Now the limit of the resource can be trans-
lated as the following constraint:

re<Us. k=1,...K (7)

Intrinsic Variables Constraints

In each zone, only one modular scaffold is selected and built. The
summation of the unit time to complete a scaffold in each zone
should be exactly as the total time required. Thus, the decision
variables should satisty the following constraints:

Zyj[:x;ﬁ[T, j=1,...,J, m=1....M 9)
t

ef{01}, j=1..J m=1..M (10)

yne{o.1}, j=1.....J, m=1,....M, t=1,..T

Problem Statement

To sum up, resource-constrained scaffolding scheduling can be for-
mally stated as the following multiobjective optimization problem

minF, = SM+1

1 — m .m
min F, = g E iy
m

J

winF, =303 (rk, —%Zrm)z (13)
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sLS;2Ci+ 1, VY (ij)eV
Cu2yjit, j=1,.J, m=1..M t=1,.T
rk,SUk, k:LyK

dar=1, j=1.....J
Soym=amer j=1.....0, m=1....M
t

K e{01}, j=1,....J, m=1,....M
yhelfol}, j=1,....J, m=1,...M, t=1,....T
S,ZO, C/ZO, ]:1,.,]

2
minF, = ZZ (rkt—%Zrk,)
kot 1

In the optimization problem in Eq. (13), there are several
variables x;?l, y;-’;, S,.» and C,,. However, the variables can be de-
termined if y7; is known. The constraint presented in Eq. (8) ensures
that there is exactly one module built at each zone. The constraint
presented in Eq. (9) ensures that if modular m is selected at zone j,
scaffolding time must equal the corresponding duration. The con-
straint presented in Eq. (7) ensures that all the used resources at
any time are not exceeded their limits. The constraints presented
in Egs. (5) and (2) are precedence constraints. The constraints pre-
sented in Egs. (10)—(12) are binary constraints and non-negative
constraints.

Tchebycheff Decomposition

In this section, a Tchebycheff decomposition method is introduced
to convert the multiobjective optimization problem presented in
Eq. (13) into a number of scalar optimization problems. In the
Tchebycheff approach, for the given weights A;, Ay, A3, the corre-
sponding scalar optimization problem is defined as

mingm = maX{)‘l|Ft _F?|’A2|Fc _Fjl’A3|Fv _Fﬂ} (14)

sLS;2Ci+1, Y(ij)eV
Cp2yl-t, j=1...J, m=1 .M t=1..T
I‘kaUk, kzl,,K

dar=1, j=1.....J
Soym=amer j=1....0, m=1,...M
1

x;ﬂe{O,l}, j=1....J, m=1,....M
y;’;e{O,l}, j=1....J, m=1,....M, t=1,....,T
§; 20, Cc; 20, j=1,....J

min g = max{\|F, — F;|, \,|F. — Fi|, \s|F, — F3[}

where F; = min{F,: subject to the constraint in Eq. (5)-(12)}; and
F7 and F; are defined similarly. For each given weight vector
A = [A1, A2, \3]7, it can be proven that the corresponding solution
of the scalar optimization problem in Eq. (14) is a Pareto optimal
solution of the multiobjective optimization problem in Eq. (13).
Conversely, it is stated that for any Pareto optimal solution of
the constraint in Eq. (13), there exists a weight vector A so that
the Pareto optimal solution of Eq. (13) is also a solution of the
corresponding scalar optimization problem in Eq. (14). Therefore,
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different Pareto optimal solutions can be obtained through varying
the weight vector A\ = [\, Ay, As3].

With AL, .. Y being a set of even spread weight factors, the
next step is to solve the optimization problem in Eq. (14) for the
corresponding \;, i = 1, ..., N. For a given \;, addressing the op-
timization problem in Eq. (14) is by no means effortless if the num-
ber of scaffolding zones is large. Conversely, it is noted that for
two close weight vectors \; and \,, both sides of the objective
function in Eq. (14) should be proximal. Based on this observation,
the neighborhood search idea proposed by Tahir et al. (2007) will
be leveraged to approximate the Pareto front of Eq. (13) through
minimizing all the optimization problems in Eq. (14) with
AL, ... AV being simultaneously processed in a single run.

FA Introduction

FA is a population-based algorithm developed by simulating
the social behavior of fireflies. It uses three idealized rules to search
an optimal solution: (1) fireflies are attracted by other fireflies in
term of their brightness and distance between them; (2) the attrac-
tiveness between two firefly colonies is proportionally increased
with the increased brightness, and decreased with the Cartesian
or Euclidean distance between them; (3) the brightness of a firefly
is associated with objectives; and (4) if there is no firefly brighter
than the other, that firefly will update.

Individual Representation

As a population-based algorithm, FA is made up of a number of
fireflies X;, i = 1, ..., pop, with brightness B(X;). In a standard
FA, the light intensity / of a firefly is inversely proportional to
the value of the objective function /(X) o [—objective(X)] for min-
imum optimization problems, while the light intensity 7(r) varies
according to the distance as follows:

I(r) = Iye " (15)

where A = light absorption coefficient; and /) = light intensity of the
source. Thus the attractiveness (3 can be defined as

B(d) = Bye " (16)

where (3, represents the attractiveness of firefly at d = 0. The
distance d between fireflies i and j is defined as follows:

dij = ||IX; = Xj|| =

Movement

The movement of a firefly i attracted to another firefly j with higher
brightness is determined by

Xi(t+1) = X,(t) + Boe "X () — X;(1)] + ae (18)

where ¢ = iteration number of process; o = randomization param-
eter generated from interval [0, 1]; and ¢ = random number drawn
from Gaussian distribution.

The new position of a firefly is determined by three terms: the
current position of the firefly, attraction to the other fireflies, and
a random walk that consists of a randomization parameter c.
The position of fireflies will be updated iteratively until their con-
vergence cater to the optimal solution.
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Discrete FA to Optimize Scaffolding Scheduling

Solving the optimization problem in Eq. (14) is infeasible if many
scaffolding zones are to be scheduled. In this section, the authors
will develop a heuristic method to solve it based on a discrete FA.
As described in Zhang et al. (2006), for given scheduling priorities
and option modes, multiple activities can be scheduled according to
their priorities. Among schedulable activities whose predecessors
are all completed and which require no more resources than the
available amount at the time, the activities with higher priority will
be scheduled earlier than others with lower priorities. Thus, the
solution of the problem is equivalent to finding an optimal combi-
nation of scheduling priorities and option modes. In the following,
the authors will describe how to utilize FA to search an optimal
combination of scheduling priorities and option modes.

Solution Representation

The FA was originally developed for continuous optimization
problems. To enable it to solve this problem, the position of a firefly
needs to be mapped to find a feasible solution of the problem. In
this problem, the solution search space is the combination of sched-
uling priorities and option modes. Let the ith firefly position at the
t step be X; = [x;1, ..., Xz My1s ..., myy)! . The authors will in-
troduce a map to convert the first M elements x;q, ..., X;, into
scheduling priorities and the last M elements m;, ...
the corresponding modes.

As for the first M elements x;;, ..., x;, the smallest position
value (SPV) rule Marichelvam et al. (2014) will be used to convert the
continuous position values to scheduling priorities. More precisely,
SPV will sort the values x;;, ..., x;;, from the smallest to the largest.
Then, the corresponding priority will be assigned for each zone
according to its order. For example, if there are 7 zones to be sched-
uled and [x;f, ...,x7] =[0.15,0.23,0.14,0.76,0.35,0.21, 0.42].
Then, the corresponding scheduling priorities are [2,4, 1,7, 5,3, 6].

For the option modes, the value m;; will be bound to [1,J],
i=1,...,M,where J; is the number of options for zone i. In order
to convert m;; into the option mode, a rounding operator that
rounds m;; to the nearest integer is used. For example, if
m;; = 1.35, the Option 1 will be used; if m;; = 2.73, the Option
3 will be used. In the iteration process, if m; is lower than 1 or
larger than J;, then it is reset as 1 or J; to maintain its bound [1, J;].

, My as

Objective Value Computation

In the implementation process, each firefly stands for a combina-
tion of scheduling priorities and option modes. To manipulate
the movement of these fireflies, it is necessary to evaluate the ob-
jective of each firefly in order to approximate the Pareto front of
the problem. To compute the objective function, the schedule
generation scheme adapted from Kim and Ellis (2010) will be
adopted.

The schedule generation scheme is to generate a feasible activity
schedule. There are two schedule generation schemes: serial sched-
ule generation scheme, and parallel schedule generation scheme. A
serial schedule generation scheme will transform the scheduling
priorities for the given option modes into a feasible schedule as
activity increases. For the parallel schedule generation scheme, a
feasible schedule will be generated as time increases. Here the au-
thors will make use of the serial schedule generation scheme (Kim
and Ellis 2010) to generate feasible scheduling. After a feasible
schedule is generated through serial schedule generation scheme,
its corresponding value (F,, F., F,) can be computed.
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Algorithm Implementation-Discretization

In FA, a firefly moves to a new solution according to the attractive-
ness from other fireflies with higher brightness. Because the code
includes integer vectors, the updating rules in Eq. (18) no longer fit
the discrete variables. Thus, they are redefined in discrete form

1
x; = sig{ﬁoe‘”’iz(Xl -X;) +a {rand 0,1)— E] } (19)
In Eq. (19), the function ¥ = sig(X) is defined as

{y,. =1, if r and (0,1) < sigmoid(x;) (20)

y;i=0, if r and (0,1) > sigmoid(x;)

where Y ={y;,y2, ---.¥,}, X={x;,xp, ...,x,}, and the
sigmoid function is defined as
1

sigmoid(x) = s (21)
e

Real variables such as coordinates and power can update ac-
cording to formula in Eq. (18). Obviously, the new defined update
mechanism is simple and easy to be realized. To promote explora-
tion and exploitation of the algorithm, the randomness coefficient is
reduced as the iterations proceed. Given the scale variations of each
problem, « is assigned as 0.95" aq (¢ is the initial randomness
factor and ¢ is the number of iteration), and the rescaled parameters
ap and ~y are set as follows (Yang 2013):

ap=001L, ~=05/L2 (22)

where L = range size between upper and lower bounds of x.

Algorithm Implementation-Framework
of the Proposed Approach

The whole framework of the proposed multiple-object discrete fire-
fly algorithm (MDFA) for scaffolding scheduling is given in Fig. 2.
First, the algorithm’s parameters are initialized. Then, weight
vector {\j, ..., \,} is generated to initialize individuals. Because
the value range of objective functions of the problem is varying,
to avoid the results converge to some certain domain, the rule in
Eq. (14) is modified as below:

, . F.(x) —min,Z
g'¢(x|w/, Z) = max wfl()c)—ml,m (23)
1<i<m | ' |max;Z — min;Z|

where max;z and min,;z = maximal and minimal values the ith ob-
jective function. Next, the algorithm performs the cycle for updat-
ing the individuals simultaneously according to Eq. (23). At each
step, the individuals use the schedule generation scheme (SGS) to
schedule scaffold. Furthermore, the neighboring individuals will be
updated if the new solution dominates them. The cycle is repeated
until the iteration satisfies the stopping criterion.

Case Study and Verification

Scaffolding Case Study

In this section, an industrial scaffolding construction operating on
Australia North Shore LNG construction site is selected as a case
illustration. To prevent the schedule overruns, the initial measures
the project team took were primarily to use more productive equip-
ment or hire more workers. Unfortunately, this sacrificed the overall
project cost. To address the problem, intricately related variables
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such as time, cost, and workforce are reconsidered concomitantly
as a multiobjective optimization problem during the process of
rescheduling the entire project from the project management per-
spective. The primary objective focuses on selecting options with
corresponding time, cost, and workforce to complete an activity so
as to concurrently minimize the project duration and/or project cost.
From the aforementioned section, a high-level mathematical model
is generated for scheduling purpose, and this model is also self-
adaptive given the resource constrains. The model specifically ap-
plies to the modular construction issues by meticulously analyzing
available data resources and concluding deterministic relationships
between scaffolds erection, productivity, and other relevant affect-
ing factors. To evaluate and verify the effectiveness of the proposed
MDFA, the proposed algorithm has been coded in Visual C++ 6.0.
The experiments have been conducted on a computer under Win-
dows 7.0 with Intel i5 CPU and 4 GB memory. The population
size is set as 66. The neighbor size is 6. The maximum number
of iterations is 1,000. Two cases studies are tested and analyzed
subsequently.

Scaffolding Case Analysis

An activity network of the project is shown in Fig. 3, with 12
activities shown in order of precedence; the activity data is shown
in Table 1. In this case study each activity incorporates a number of
unique scaffold modules and for each activity the number of crew,
equipment, work hours, and direct costs are presented. In this case,
the available resources (number of crews and equipment) are as-
sumed at no larger than 10 for each work hour and the project
duration less than 25 days. F,, F., and F, are the three project op-
timization objectives as previously mentioned.

Using the optimization model presented in Eq. (13), the pre-
sented MDFA was applied to generate the solution to the problem.
Where the parameters are preset as: population size is 66 (M = 3,
H = 10), maximal iteration is 1,000, and resource constraints U
are set according to Table 1.

The deadline of the project P =25 days, so the longest
duration is not more than 25 x 8§ = 200 h. The calculation of pay-
ment is based on the standard rate for skilled workers (constant
¢ = 60/h). Normally cost c;; is in direct and inverse ratios to
the number of crews, therefore it is set that ¢;; = cx;;. After a
run of the proposed algorithm, a quasi-optimal duration and resour-
ces allocation of the problem is presented in Table 2 and Fig. 4.
Table 2 shows the results from the proposed MDFA after deleting
the duplicate solution sets. The optimal solutions for project resour-
ces allocated have been produced with the average time consump-
tion, number of workers, and the total cost. The efficiency of
the MDFA method reflects the advantage of using the real data
in the search course to help and speed up finding optimality. Differ-
ent from the case of single-objective optimization, the solutions ob-
tained by the multiobjective optimization algorithms consist of
multiple distinct solutions that are all Pareto optimal. As shown
in Fig. 4, in reducing the time of the project, the cost of project
will more likely increase. Likewise, the leveling and cost of the
project reveal an adverse relation.

In order to evaluate the effectiveness of the proposed models and
algorithm, a state-of-the-art nondominated sorting genetic algo-
rithm I (NSGA-II) proposed by Ghoddousi et al. (2013) was used
as a benchmark. Several metrics adapted from Yu and Gen (2010)
were applied to assess the accuracy and the diversity of the Pareto
front generated by the multiobjective algorithms. The first type is
quality metrics (QMs), which represent the percentage of the
nondominated solutions in the archive obtained by an algorithm.
The second type is generational distance (GD), which is used to

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 04016064



Downloaded from ascelibrary.org by CURTIN UNIV OF TECHNOLOGY on 11/13/16. Copyright ASCE. For persona use only; all rights reserved.

Initialize Parameters:

: ; For i=1 to pop
Pop: n'umbeI.' of 5':']_““'?“_ Generate a well-distributed weighted Random generate order and mode of
NR: dimension of individuals e : T
M A - vectors A, Age acitvities;
axgen: maxima 'lieratmn num Evaluation individuals F.
Nm: number of neighbor
h 4
Initialize neighbor N = {n;,nz,-
Initialize reference point z* | .ny} for each firefly based on - Initialize ileration siep 1=0*
weighted vectors,
b‘
""
Execute 5GS to schedule node i, =0
5 / If exist f; satisfy h‘x Y Move firefly i to firefly f to
& e glo(fiwszr<gte(fwiz®) = > generate new individual fi
wg N

e
Select individual & from neighbor of
I'ireﬂ}r_ i, k=0
g e
E: o R 4 o
g 5 gte(fwiz*)<gte(flwnz*) = Update firefly k by new individual
.g‘ --\-\---\---""—-__\_\_ ____—‘"---F--’-f
g N
Y
e+
o - . % R-ﬁ:—x"" N
=< k< neighbor size of firefly i =
— RE_H__'__F_F,,—“""-!,
Y
Update reference point z+ ‘
_.--"”-F-/--'-‘- - - -H--H-H-""-H.
‘ i+ ‘ 2 i<pop =X
- o
'm...,ﬂ___\x_%- _"d_#_,_f
N T
| o |

/’—/’—’ | ““-““-\-“““-\-- P \

2 s <O ¥ ’( Output Pareto solution set i

St e, -

Fig. 2. Framework of discrete FA to optimize scaffolding scheduling

© ASCE

04016064-7 J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 04016064



Downloaded from ascelibrary.org by CURTIN UNIV OF TECHNOLOGY on 11/13/16. Copyright ASCE. For persona use only; all rights reserved.

ral — ™,
{ —— | Finish 1
B y 7 o "x\_____ "\\ . .- I
) ——— ™ MoD-0us6 ) / =
5 =
. MOD-0023 ..\\- a MOD-0034\ —b-'// MOD-0035 \\'r//
% / _’J\\ 4 T I.\\..___ o S
Fig. 3. Activity on node network of project instance
Table 1. Activity Data of the Scaffolding Case Study
Number Duration Direct
Activity Precedent Types of scaffold modules Crews of equipment (work hours) cost (\$K)
JK-0001 — 1. Independent tied scaffold 3 1 30 23
2. Birdcage scaffold 4 1 40 21
3. Tower scaffold 4 2 40 12
JK-0002 — 1. Independent tied scaffold 4 1 60 21
2. Birdcage scaffold 1 3 70 80
3. Tower scaffold 2 1 20 60
4. Slung scaffolds 4 1 30 50
JK-0003 1. Independent tied scaffold 4 1 30 13
2. Birdcage scaffold 4 3 50 38
3. Tower scaffold 1 1 10 40
MOD-0023 1. Independent tied scaffold 4 2 30 33
2. Birdcage scaffold 4 3 50 20
MOD-0024 JK-0003 1. Independent tied scaffold 3 2 18 12
2. Birdcage scaffold 1 1 30 24
3. Tower scaffold 4 1 50 15
4. Slung scaffolds 3 2 22 11
MOD-0034 MOD-0023 1. Independent tied scaffold 8 4 52 22
2. Birdcage scaffold 4 2 68 12
3. Tower scaffold 5 4 58 28
MOD-0035 MOD-0023 1. Independent tied scaffold 7 1 50 18
MOD-0034 2. Birdcage scaffold 4 5 80 47
3. Tower scaffold 2 1 15 19
4. Slung scaffolds 3 5 15 19
MOD-0036 JK-0003 1. Independent tied scaffold 6 1 50 215
MOD-0024 2. Birdcage scaffold 6 1 60 300
3. Tower scaffold 1 2 40 90
JK-0007 JK-0001 1. Independent tied scaffold 5 2 60 200
2. Birdcage scaffold 5 1 58 300
4. Slung scaffolds 2 2 25 140
JK-0008 — 1. Independent tied scaffold 4 5 45 380
2. Birdcage scaffold 5 1 60 106
3. Tower scaffold 5 1 35 100
JK-0009 JK-0008 1. Independent tied scaffold 2 2 45 305
2. Birdcage scaffold 2 2 20 146
3. Tower scaffold 1 1 18 150
4. Slung scaffolds 4 3 17 90
MOD-0041 MOD-0023; MOD-0034; MOD-0035 1. Independent tied scaffold 6 5 21 56
2. Birdcage scaffold 6 5 66 310

calculate the distance between the Pareto front and the solution set.
And the final metrics are spacing metrics (SMs), which are to mea-
sure the diversity of solutions in archive. For the sake of unbiased
comparison, the benchmarked algorithm NSGA-II also applied 66
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individuals as the population scale. The crossover rate was set as
0.8, and the mutation rate was 0.01 for all variables.

Because the true Pareto front was difficult to obtain, this study
operated two algorithms and ran 30 trials to generate nondominated
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Table 2. Pareto Solutions Achieved by the Proposed MDFA for the Scaffolding Case Study

Solution number Time (work hours) Cost (\$K) Leveling Solution number Time (work hours) Cost (\$K) Leveling
1 124 746 647.5 2 126 690 449.8
3 133 681 380.9 4 133 680 391.3
5 134 677 330.2 6 134 665 361.9
7 134 660 488 8 139 648 523.8
9 143 647 558 10 144 636 471.8
11 146 708 270.7 12 146 697 281.5
13 146 635 462 14 154 637 383.7
15 154 623 494.7 16 163 635 353.2
17 163 625 402 18 163 623 484.1
19 164 621 604.2 20 166 608 603.3
21 172 621 423.8 22 172 612 437.3
23 173 610 465 24 174 597 514.4
25 182 596 590.8 26 192 591 633.9
27 192 585 780 — — — —
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Fig. 4. Pareto front of the scaffolding case study

Table 3. Statistical Results of Three Metrics Based on 30 Independent
Runs for the Scaffolding Case

MOFA NSGA-II
Statistic values GD SM QM GD SM QM
Maximum 7795 89.64 0.169 94.12 459 0.1
Minimum 8.89 15.06 0.0116 20.8 9.4 0.007
Mean 38.47 455 0.088 55.21  23.17 0.049
Standard deviation 19.76  19.70  0.038 18.81 10.17 0.026

MDFA solutions. The solutions obtained by these trials were gath-
ered and the dominated and closer solutions were deleted. Then 100
solutions were achieved for the Pareto front to evaluate the perfor-
mance of the algorithms. Furthermore, two algorithms were
repeated for 30 independent times for the case study. The statistical
values and metrics levels of these trials are shown in Table 3
and Fig. 5.

The previous outcomes reveal that MOFA is superior to NSGA-
II in the aspects of the GD and QMs values. It can be inferred
that MOFA is capable of obtaining more accurate solutions than
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NSGA-IL Conversely, NSGA-II is capable of obtaining more uni-
form distribution solutions than MOFA, as NSGA-II uses the crowd
sort method to distribute Pareto solutions.

Next, the convergence of the algorithms was compared. Given
the same number of individuals for the two algorithms, the number
of function evaluation at each iteration stage across two algorithms
is set as identical as well. The average values of the GD metric are
calculated based on 20 independent runs in MOFA and NSGA-II,
respectively.

The result shown in Fig. 6 indicates that MOFA converges faster
than NSGA-II in terms of the number of function evaluations in
minimizing a GD, which demonstrates that MOFA could be an
efficient and effective algorithm for the case study. As shown in
Fig. 4, the proposed MDFA generates various results. Users can
select one of them to perform the task as per the resource that
is applicable. To assist decision making, an interactive fuzzy deci-
sion-making approach is capitalized on to select a compromised
solution according to the reference parameters (Malekpour et al.
2013). At first, each objective function of the multiobjective re-
source-constrained scaffolding scheduling problem can be stated
as the following membership function:
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Table 4. Results of Different Compromised Solutions of the Scaffolding

Case
Case Objective 1: time Objective 2: cost Objective 3: leveling
Scheme 1 143 647 558.0
Scheme 2 164 621 604.2
Scheme 3 172 621 423.8
0, fi(X) 2 maxf;,
maxf; — fi(X) .
w|fi(X)| = —————~, minf; < f;(X) <maxf; 24
0] = 4 g M S FX) Smaxf, (24
1 £i(X) < minf,

where X = solution obtained by MDFA; max f; and maxf; = upper
and lower bounds of the objective functions; and w|[f;(X)] = degree
of the membership of the ith objective functions. According to the
membership function, an interactive fuzzy satisfying method can
then be used to obtain a comprising solution from the Pareto
set. To select a preferred solution, a decision maker can provide
the preference level from the membership function between 0
and 1. The preference level is determined through the user expect-
ation of each objective function. Based on the reference value pro-
vided by decision maker, a compromised optimal solution based on
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the reference value of decision maker can be obtained through solv-
ing the following problem:

D(X) = minyco{max|w, —wf;(X)[}

where (2 = set of Pareto front; w,; = predefined value; and wf;(X) =
membership function.

The authors use interactive fuzzy decision to determine a com-
promise solution from the set of nondomination solutions. The
three objectives are time, cost, and leveling. Specifically, time and
cost are the most important factors in any resource-constrained
scheduling problem. Hence, these objectives are assigned with
a high expectation level, with a value ranging from 0.7 to 0.9. Three
configuration schemes are proposed to select solutions and the
parameters of Schemes 1, 2, and 3 are (0.95, 0.7, 0.5), (0.7, 0.9,
0.5), and (0.5, 0.7, 0.9), respectively. Table 4 illustrates the com-
promised solutions based on the proposed algorithm.

For example, Figs. 7 and 8 indicate the scheduling results of
the Schemes 1 and 3, from which four key elements, namely mode,
time, crews, and number of equipment, are respectively shown in
detail for each activity of the corresponding scenario. From these
charts, it is evident that the project can be finished with a makespan
of either 143 or 172 work hours. As a time prior scheduling para-
digm considering the resource constraints for each activity, these
figures demonstrate the proposed algorithm is capable of furnishing
feasible Pareto optimal solutions.

This section leverages a warehouse construction case adapted
from Chen and Weng (2009) to validate the proposed models and
algorithm. Similar to the scaffolding case, this case also involves a
number of activities while each activities incorporates distinct op-
erational modes in terms of operational time, direct cost, demanded
resource, and so on. The objective is to obtain well-leveled (non-
dominated) schedules with respect to these factors. The demanded
resource includes one renewable resource, the number of workers
(labor), and the upper limit is 12 per day. Based on the proposed
MDFA models and algorithm, the optimized results are reflected
in Fig. 9, which shows the distribution for 21 nondominated points
after the 1000th generation. The relationship between the corre-
sponding nondominated points and the objectives of the model
can be interpreted according to the results listed in Table 5. As this
is a multiobjective optimization problem, time, cost, and resource
leveling need to be analyzed and concluded overall. A reduction in
the resource moment deviation means an increase of activity time
and additional cost to the project, as evidenced from 22 to 26
consecutive solutions with equal time of 201 work hours, of which
smaller resource moments are associated with greater cost values. It
is also observed that in accordance with real life, greater cost values
are generally derived from smaller resource moment deviations,
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Fig. 8. Timetable of Scheme 3 for the scaffolding case study

which means that the resource leveling can cause fluctuations of the
project cost.

In order to evaluate the effectiveness of the proposed models and
algorithm in this paper, results were compared against a number of
state-of-the-art algorithms generalized by Ghoddousi et al. (2013).
Because the true Pareto front is difficult to be attained by a single
run, this study ran 10 trials to generate nondominated MDFA
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solutions. After analyzing all the solutions and eliminating the
dominated and similar ones, this paper archives the nondominated
results in Table 6.

It can be inferred that the solutions based on the proposed
models and algorithm are superior to the counterpart solutions
yielded by other algorithms. Specifically, in this case, the proposed
approach outperforms the others with a level of 22.2, 53.2, and
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Table 5. Pareto Solutions Achieved by the Proposed MDFA for the Warehouse Construction Project
Solution Time Cost Resource moment deviation Solution Time Cost Resource moment deviation
1 190 148,600 2,481.9 2 191 148,000 2,467.9
3 192 147,800 2,426.5 4 193 147,200 2,425.1
5 193 148,000 2,314.8 6 193 146,100 2,569.3
7 194 147,500 2,302.4 8 195 147,500 2,499.9
9 196 148,700 2,427.5 10 196 147,000 2,493
11 196 146,200 2,470.7 12 196 145,300 2,512.3
13 196 147,400 2,334.9 14 197 146,700 2,452.7
15 197 148,100 2,343.2 16 198 146,200 2,442.8
17 198 146,900 2,354.2 18 198 146,200 2,442.8
19 198 147,300 2,334.8 20 198 146,700 2,295.9
21 200 145,800 2,389.2 22 201 147,000 2,249.3
23 201 145,900 2,354.5 24 201 146,300 2,336.4
25 201 146,600 2,267.7 26 201 146,100 2,217.5
27 202 145,400 2,380.1 28 202 146,100 2,294.1
29 202 146,000 2,273.5 30 202 146,300 2,189.1
31 203 145,400 2,259.6 32 203 145,700 2,127.6
33 206 146,300 2,096.7 34 207 146,200 2,060.2
35 208 147,600 2,242.1 36 208 145,700 2,035
37 208 145,400 2,212 38 209 147,100 2,233.7
39 210 148,000 2,141.5 40 210 147,200 2,142
41 210 146,600 2,169.9 42 210 146,200 2,233.7
43 211 146,700 2,107.5 44 211 145,700 2,222.1
45 212 145,400 2,193.8 46 213 146,900 2,081.7
47 213 146,300 2,108.3 48 214 146,400 2,044.6
49 214 145,800 2,102.5 50 217 145,700 2,054.3

Table 6. Comparative Evaluation of the Proposed Method against Other

Methods for the Construction Project Case

Construction Project

Table 7. Result of Different Compromised Solutions of the Warehouse

Approach QMs SMs GD Case Objective 1: time  Objective 2: cost  Objective 3: leveling
MDFA 0.11 58.14 17.6 Scheme 1 194 147,500 2,302.4
Multiobjective 0.09 124.26 96.2 Scheme 2 203 145,400 2,259.6
Genetic algorithm (MOGA) Scheme 3 196 147,400 2,234.9
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Fig. 10. Optimized timetable for the warehouse construction project under Scheme 1

81.7% in performance of QMs, SMs, and GD, respectively.
This study also applies an interactive fuzzy decision approach to
determine the compromised solution from a set of nondominated
solutions. The configuration parameters (time, cost, and resource
leveling) are as follows: Scheme 1 (0.9, 0.5, 0.6); Scheme 2
(0.6, 0.9, 0.5); and Scheme 3 (0.9, 0.5, 0.9). The results of different
compromised solutions of the proposed approach are shown in
Table 7. Finally, Fig. 10 sets forth the detailed scheduling activities
for Scheme 1, from which a feasible Pareto optimal solution (con-
straints are overcome at each stage) is noticeably demonstrated.
This renders the MDFA models and algorithm a feasible tool
for the scaffolding project decision makers, and allows them to
carry out multiobjective trade-off analysis (time, cost, and resource
leveling) and make optimal decisions for their project.

Discussion

The paper studies the multiobjective project scheduling problem
in a modular scaffolding construction context. To address the pro-
posed resource-constraint challenges simultaneously (to seek for
the optimal Pareto solutions), a MDFA was derived from a multi-
objective constrained optimization model that targets the optimal
combination of the project makespan (start time, finish time) and
execution mode of each project activity. Based on a real scaffolding
project, the optimization results manifest the credibility of the pro-
posed models and algorithm when seeking the best workforce
trade-off results reflected from time, cost, and resource leveling.
The results also reveal that a less fluctuated resource usage would
increase project cost, which is consistent with reality. A case study
adopted from Chen and Weng (2009) and a number of comparative
techniques have been used to verify the accuracy and effectiveness
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of the proposed models and algorithm, as against the other state-
of-the-art algorithms in the nondominated optimization discipline.
Because the proposed MDFA is a heuristic and swarm-based algo-
rithm, it can only produce an approximation of the real solution. In
the future, testing the proposed MDFA under more complex and
varied types of resource constrains is imperative. Lastly, by embed-
ding a resource leveling algorithm module and a Ceil function, the
current algorithm will become self-adaptive and applicable for a
wider set of discrete problems.
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Notation
The following symbols are used in this paper:

= complete time of scaffolding at zone j;
" = cost of scaffolding at zone j with alternative m;

e
ol

J = scaffolding zones;
k = resource type;
m = alternatives of modular scaffolding;

rix = required amount of resource k for scaffolding j at zone m;
ry; = resource usage of resource k at time ;
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§; = starting time of scaffolding at zone j;
t = time period;
t;?’ = duration of scaffolding at zone j with alternative m; and
U, = available upper bound for resource k.
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