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A Smoothing Method for Ramp Metering
Chuanye Gu , Changzhi Wu , Kok Lay Teo , Life Senior Member, IEEE, Yonghong Wu, and Song Wang

Abstract— Ramp metering offers great potential to mitigate
traffic congestion and improve freeway management efficiency
under traffic congestion conditions. This paper proposes an
optimization program for freeway dynamic ramp metering based
on Cell Transmission Model (CTM). This problem has been
formulated as a discrete time optimal control problem with
smooth state equations and constraints to meter traffic inflow
from on-ramps. In the proposed model, the ‘min’ operators in the
primal CTM are non-differentiable and thus, the corresponding
optimal control problem cannot be solved directly using con-
ventional gradient based methods. In this paper, we introduce a
smooth approximation to approximate the ‘min’ operators and
then a unified computational approach is developed to solve
the problem. Theoretical analysis is carried out, showing that
the optimal solution obtained from the approximated problem
converges to the optimal solution of the primal CTM. Compared
to the classical inequality relaxation method, our method can
resolve the flow holding-back problem and reduce under funda-
mental diagram phenomenon. Compared with the Big-M method,
our method has better efficiency. To achieve the desired traffic
response control in real application, a series of online optimal
control problems are solved using Model Predictive Control
(MPC). Simulation studies show that our method can significantly
improve freeway traffic management efficiency.

Index Terms— Cell transmission model, ramp metering,
optimization control, smooth approximation, Model Predictive
Control.

I. INTRODUCTION

TRAFFIC metering has great potential to improve urban
network managements by avoiding the loss of capacity at

the cost of delaying vehicles entering the congested areas of
urban street networks [1], [2]. It can also be used to improve
freeway operation by appropriately regulating/limiting the
inflow from on-ramps to the freeway so as to keep the traffic
state below the saturated flow [3], [4].

Queue-spill overs and gridlock decrease the capacity of
freeway handling vehicles, thus wasting commuting time in
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congested traffic conditions, especially during peak hours.
Ramp metering is an efficient way to protect congested areas
of the freeway from oversaturated flow conditions. ALINEA,
which is one of the first ramp metering controllers, is a
feedback control of integral type [5]. Based on the ALINEA,
a proportional integral regulator known as Pi-ALINEA was
then proposed. Tracking a reference point for the traffic density
(or occupancy) is the main purpose of these regulators. There
are also some other rule-based control systems, for example
coordinated control HERO [6], and others (see [7], [8]).

In addition to these simple regulators, many complex con-
trollers have been designed based on optimization approaches.
To alleviate freeway traffic congestion, different cost
functions, such as maximising the system throughput or
minimizing the total travel time spent by drivers in a traf-
fic network system, are proposed. One of the most widely
adopted optimization-based models in freeway control with
ramp metering design is the macroscopic model, including the
first order models (Cell Transmission Model (CTM) [9], [10])
and the second order models [11]. The second order models
have obvious advantages because they can show the phenom-
enon of capacity drop. However, compared with first-order
models, they contain more parameters that are required to be
customized. To date, the constructed optimization problems
based on these models have only been solved in the sense
of local optimality [12], [13] due to the complexity of these
optimization problems.

Various formulations and solution techniques have been
proposed for the optimal ramp metering problems. The seminal
research of optimization-based ramp metering can be traced
back to [14], where a static model of traffic behavior was
utilized for the formulation of the problem. This model has
been extended in various forms in [15]. In particular, a deter-
ministic ramp metering optimization program was proposed
in [16] based on the Asymmetric Cell transmission model
(ACTM), where it was demonstrated that the solution to the
linear relaxation problem is feasible for freeway segments with
only on-ramp and off-ramp junctions.

In [17], the Link-Node Cell Transmission Model (LN-CTM)
was used to reformulate this problem as a linear program under
relaxed piecewise-affine fundamental diagrams. Similarly, the
‘min’ operators were relaxed in [18] to obtain a feasible
solutions by employing traffic demand control in the cell.
Particulary, if the fundamental diagrams are assumed to be
symmetric triangular, meaning that the backward wave speed
equals to the free-flow speed of each cell, then by utilizing the
priority control flow to enter the merge junctions, the solution
of the relaxed problem is feasible. In [19], a novel first-order
multi-lane macroscopic traffic flow model was first proposed
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for motorways, which considers the changes of lateral flow
and longitudinal flow. In [20], the model proposed in [19]
was formulated as a discrete time optimal control problem
with linear relaxation through the use of ramp metering and
variable speed limits. Recently, a traffic network finite-horizon
optimal control model with exact linear relation for ramp
metering controls and variable speed limits is proposed in [21],
for which the distributed alternating direction method of
multipliers (ADMM) is used to optimize the proposed model.
A decentralized Model Predictive Control (MPC) approach is
proposed in [22] for the freeway system on lossy communica-
tion networks under the mainline demand control. The priority
parameter is used to ensure the flow of vehicles from both
cells.

In [23], a Modified Cell Transmission Model (MCTM) is
formulated as a Linear Complementarity System (lCS) which
can be efficiently solved, thus successfully avoiding the hard
nonlinearity caused by the ‘min’ operators. In [24], it is
shown that if the objective is to minimize the total time spent
and the turning rates are invariant, then through the use of
ramp metering and partial mainline demand control, convex
relaxation can accurately obtain the optimal solution of the
original problem by introducing an alternative representation
system.

Literature review shows that many ramp metering studies
used CTM for freeway network loading. According to their
approaches of reducing the complexity of the problem, the
papers mentioned above can be divided into three categories:
(i) The ‘min’ operators are directly replaced by a set of
linear inequality constraints, where the effect of the flow
holding-back problem is ignored; and (ii) The ‘min’ operators
are relaxed through the use of inequality constraints under
specific assumptions, such as symmetric triangular fundamen-
tal diagrams, or combined with traffic demand control; and
(iii) The original ‘min’ operators are transformed equivalently
to a series of linear inequality constraints using the Big-M
method [1] through the introduction of binary variables.
Although this transformation is equivalent, the transformed
problem is computationally demanding because many aux-
iliary binary variables are being introduced, and hence it is
not possible to rely on online computation. However, even
for methods based on the equivalent transformations, they
are specific methods and hard to calculate, and are hard to
be extended to solve general problems. Based on the above
discussion, these methods either cannot ensure the optimality
of the solution obtained or lack generality.

In this paper, we will propose a new solution strategy
based on a smooth approximation of the ‘min’ operators.
This approximate model can resolve the holding back problem
effectively through appropriately adjusting certain parameters
and can be extended to solve general problems without special
assumptions. Compared with Big-M method, our model is only
required to solve a nonlinear optimal control problem without
binary variables and thus it makes possible online computation
for traffic response applications. The contributions of our study
are as follows:

(i) Propose a smooth CTM-based ramp metering
optimization model, where fundamental diagrams

are clearly displayed to avoid flow holding-back
problem.

(ii) Design a customized MPC solution method based
on the co-state system such that the problem under
consideration can be solved effectively.

(iii) The proposed solution approach can ensure optimal-
ity, convergence and feasibility.

(iv) Nonlinear cases can be solvable by our method
because the development of our method does not
depend on the linearity assumption on the cost func-
tion and the constraints. However, linear inequality
relaxation based methods are not applicable.

The rest of the paper is organised as follows. Section II
formulates and models the optimization problem of freeway
ramp metering. In Section III, our approximate model is pro-
posed and the main convergent results are established. Solution
techniques are developed in Section IV. Sections V shows the
numerical studies and Section VI gives the conclusion.

II. OPTIMIZATION PROBLEM

In this section, we will formulate the traffic flow dynamic
as an optimal control problem to optimize the inflow from
on-ramps to the freeway. Dynamic inflow from on-ramps
are the main control variables over the study period. The
aim is to improve freeway network performance by reg-
ulating the number of vehicles to enter the freeway. The
problem is formulated and modeled based on the proposed
CTM [9], [10]. The CTM is a numerical method developed
based on the space-time discretization of the hydrodynamic
traffic flow model [25]. See, for example, [26], [27]. In the
formulation of CTM, each freeway is discretized into several
homogenous segments, called subsections or cells, and the
traffic flow is analysed in each cell through discretize time
steps.

We summary in Table I the definitions of all the parameters,
sets and decision variables used in this paper.

A. Primal Cell Transmission Model

The proposed cost function of the optimization problem is to
optimize the total delay, including the mainline delay and the
ramp delay. As shown in [28], this cost function is suitable
for the oversaturation of the freeway system, and it tries to
allow as many vehicles as possible to reach the destinations.
The problem can be formally stated as follows:

(PCTM) min
r

D =
T∑

t=1

I∑
i=1

(ρi,t �xi�t − fi,t �xi�t

vi
)

+
T∑

t=1

J∑
j=1

q j,t�t, (1)

s.t. ρi,t+1 = ρi,t + �t

�xi
× ( fi−1,t − fi,t + ri,t

− si,t ), ∀i = 1, . . . , I,∀t, (2)

fi,t = min{viρi,t , Ci , Ci+1,

wi+1(ρmax,i+1 − ρi+1,t )}, ∀i, t, (3)

q j,t+1 = q j,t + �t (d j,t − r j,t ), ∀ j, t, (4)
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TABLE I

MODELS’ VARIABLES AND PARAMETERS

0 ≤ ρi,t ≤ ρmax,i , ∀i, t, (5)

0 ≤ q j,t ≤ qmax, j , ∀ j, t, (6)

0 ≤ r j,t ≤ rmax, j , ∀ j, t . (7)

The dynamic of the density in each cell i at time step t
is governed by (2). The outflow from the cell i during the
time step t is controlled by a piecewise linear fundamental
diagram described in (3). The dynamic of the queue length
for each on-ramp j at time step t is given by (4). The upper
and lower bounds for the density ρi,t , queue length q j,t and
ramp-metering r j,t are given by (5)-(7), respectively.

Let V = {r = [r1, r2, . . . , rJ ] ∈ R
J : 0 ≤ r j ≤ rmax, j ,∀ j},

where rmax, j is a given constant. It is noted that V is a compact
and convex subset of R

J . Let r be a control sequence {rt : t =
1, . . . , T − 1} in V . Then, r is called an admissible control.
We use U to denote the class of all such admissible controls.
For a control r in U , if it satisfies the constraints (5)-(7), then
it is called a feasible control sequence. Let F be the class of
all such feasible controls.

Note that the constraint (3) is equivalent to the following
constraint:
fi,t = min{min{viρi,t , Ci }, min{Ci+1, wi+1(ρmax,i+1

− ρi+1,t )}},∀i, t, (8)

where f D
i,t = min{viρi,t , Ci } and f S

i+1,t = min{Ci+1,
wi+1(ρmax,i+1 − ρi+1,t )} represent the demand function and
supply function, respectively.

B. Existing Solution Methods

1) Linear Inequality Relaxation Based Method: Due to the
‘min’ operators in constraint (3), the optimization problem
PCTM is difficult to be solved directly. To overcome this
difficulty, the ‘min’ operators are relaxed to the following

Fig. 1. Density and flow for inequality relaxation.

inequality constraints in [16]:

fi,t ≤ viρi,t , ∀i, t, (9)

fi,t ≤ Ci , ∀i, t, (10)

fi,t ≤ Ci+1, ∀i, t, (11)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t ), ∀i, t . (12)

In general, the optimal value of fi,t obtained for solv-
ing Optimal Control Problem PCTM with constraint (3)
being relaxed to constraints (9)-(12) is strictly less than the
right-hand sides of all the constraints (9)-(12). This problem
is known as the flow holding-back problem. In [16], it was
shown that for ramp metering control problems, the traffic
flow states caused by the inequality relaxation constraints are
lower than the fundamental diagram of the CTM. In fact,
it is observed that for some cases in our experiments, the
traffic flow values of some cells are even zero due to the flow
holding-back problem as shown in Fig. 1. In this paper, we will
introduce smoothing approximation of the ‘min’ operator to
resolve the holding-back problem (or under the fundamental
diagram problem) approximately.

Under some strong assumptions, such as symmetric triangu-
lar fundamental diagrams, or using the traffic demand control
in each cell, the ‘min’ operators can be relaxed equivalently to
the inequality constraints (9)-(12), see [17], [18], [21], [22].
However, it is doubtful whether the assumption of demand
control in every cell is realistic. Thus, this method is not a
general problem method.

2) Big-M Method: Another approach is to convert the ‘min’
operators in constraint (3) into equivalent standard inequality
constraints through the introduction of binary variables. This
method is known as Big-M method [1]. In fact, constraint (3)
can be written equivalently as the following constraints:

fi,t ≤ viρi,t , ∀i, t, (13)

fi,t ≤ Ci , ∀i, t, (14)

fi,t ≤ Ci+1, ∀i, t, (15)

fi,t ≤ wi+1(ρmax,i+1 − ρi+1,t ), ∀i, t, (16)

fi,t ≥ viρi,t − M(1 − αi,t ), ∀i, t, (17)

fi,t ≥ Ci − M(1 − βi,t ), ∀i, t, (18)

fi,t ≥ Ci+1 − M(1 − γi,t ), ∀i, t, (19)

fi,t ≥ wi+1(ρmax,i+1 − ρi+1,t ) − M(1 − χi,t ), ∀i, t,

(20)
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αi,t + βi,t + γi,t + χi,t = 1, ∀i, t, (21)

αi,t ∈ {0, 1}, βi,t ∈ {0, 1}, γi,t ∈ {0, 1}, χi,t ∈ {0, 1}.
(22)

Note that after the reformation of the constraints, the result-
ing optimization problem can be solved only for small-size
networks using traditional optimal algorithms. Due to the
introduction of a large number of binary variables, it is not
feasible to be solved even for medium-sized networks. In this
paper, using the structure of the model, an effective solution
approach is designed to avoid the flow-holding back problem
and it is applicable for large-size networks. Details are given
in the next section.

III. APPROXIMATE MODEL

A. Min Approximation

It is difficult to solve Problem PCTM directly because
the flow fi,t between cells is required to equal to the min-
imum value in constraint (3). However, as discussed before,
constraint (3) is the key to eliminating internal metering
and removing inflow holding-back. To resolve this problem,
we propose a novel smoothing approach to approximate the
‘min’ operators in constraint (3) and show that the solution
obtained from the approximate problem converges to the
solution of Problem PCTM.

The main technical challenge of constraint (3) is how to deal
with its non-smoothness. Based on (8), we can equivalently
represent the demand function as f D

i,t = min{viρi,t , Ci } =
1
2 (viρi,t + Ci − |viρi,t − Ci |), and the supply function as
f S
i+1,t = min{Ci+1, wi+1(ρmax,i+1 − ρi+1,t )} = 1

2 (wi+1
(ρmax,i+1 −ρi+1,t )+Ci+1 −|wi+1(ρmax,i+1−ρi+1,t )−Ci+1|).
Let ε > 0 be a small number, we use f Dε

i,t and f Sε
i+1,t to

approximate f D
i,t and f S

i+1,t , respectively, i.e.,

f Dε
i,t = 1

2
[viρi,t + Ci −

√
(viρi,t − Ci )2 + ε2

4
], (23)

and

f Sε
i+1,t = 1

2
[wi+1(ρmax,i+1 − ρi+1,t ) + Ci+1

−
√

(wi+1(ρmax,i+1 − ρi+1,t ) − Ci+1)2 + ε2

4
]. (24)

It is obvious that the functions f Dε
i,t and f Sε

i+1,t are smooth
and differentiable. Fig. 2 shows the demand function and
supply function for the ‘min’ and the approximate operators
with ε = 10−5. From Fig. 2, we can observe that the approxi-
mate functions not only retain the main characteristics of the
‘min’ operators, such as the trend, but also ensure differentia-
bility at the inflection point.

Before carrying out further analysis, we estimate the bounds
of f D

i,t − f Dε
i,t and f S

i+1,t − f Sε
i+1,t . By the definitions of f Dε

i,t
and f Sε

i+1,t , it holds that

0 ≤ f D
i,t − f Dε

i,t ≤ ε

4
, (25)

Fig. 2. Demand and supply function for ‘min’ and approximate operators.

Similarly, we can show that

0 ≤ f S
i+1,t − f Sε

i+1,t ≤ ε

4
. (26)

By virtue of relation (8), we have

fi,t = 1

2
( f D

i,t + f S
i+1,t − | f D

i,t − f S
i+1,t |). (27)

Similarly, let

f εε
i,t = 1

2
( f Dε

i,t + f Sε
i+1,t − | f Dε

i,t − f Sε
i+1,t |). (28)

Using the same approximation method, we obtain

f ε
i,t = 1

2
( f Dε

i,t + f Sε
i+1,t −

√
( f Dε

i,t − f Sε
i+1,t )

2 + ε2

4
). (29)

Based on inequalities (28) and (29), we have

0 ≤ f εε
i,t − f ε

i,t ≤ ε

4
. (30)

B. Approximate Model

Now, the approximate problem of Problem PCTM may be
stated as given below:

(APCTM) min
r

Dε =
T∑

t=1

I∑
i=1

(ρε
i,t �xi�t

− f ε
i,t (ρ

ε
i,t )�xi�t

vi
)

+
T∑

t=1

J∑
j=1

q j,t�t, (31)

s.t. ρε
i,t+1 = ρε

i,t + �t

�xi
× ( f ε

i−1,t (ρ
ε
i−1,t )

− f ε
i,t (ρ

ε
i,t ) + ri,t − si,t ), ∀i, t, (32)

0 ≤ ρε
i,t ≤ ρmax,i , ∀i, t, (33)

and constraints (4), (6), (7), (23), (24) and (29).
For a control r in U , if it satisfies the constraints (6),

(7) and (33), then it is called a feasible control sequence.
Let Fε be the class of all such feasible controls. Clearly,
Problem APCTM is a smooth discrete time optimal control
problem which can be efficiently solved using traditional
optimization approaches, such as sequential quadratic pro-
gramming algorithm (SQP) [29].
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Theorem 1 below shows that the solution of our approximate
model APCTM will converge to the solution of Problem
PCTM through appropriately controlling the parameter ε.

Theorem 1: Under the conditions of Lemma 2, r is an
optimal control vector of Problem PCTM.

Proof: By induction, it follows from Lemma 2 (see
Appendix) and the differentiability of q j,t that, for each j =
1, . . . , J, t = 1, . . . , T ,

lim
ε→0

q∗ε
j,t = q j,t , (34)

and

lim
ε→0

qε
j,t = q∗

j,t . (35)

Based on Lemma 1 (see Appendix), we have, for each i, t ,

lim
ε→0

f ε
i,t (ρ i,t ) = f i,t , (36)

and

lim
ε→0

f ε
i,t (ρ

∗
i,t ) = f ∗

i,t . (37)

By Lemma 2 (see Appendix), limε→0 ρ∗ε
i,t = ρi,t and

limε→0 ρε
i,t = ρ∗

i,t for each i and t . Since f ε
i,t is continuously

differentiable with respect to each of the components of ρ and
r , we have

lim
ε→0

f ε
i,t (ρ

∗ε
i,t ) = lim

ε→0
f ε
i,t (ρ i,t ). (38)

and

lim
ε→0

f ε
i,t (ρ

ε
i,t ) = lim

ε→0
f ε
i,t (ρ

∗
i,t ). (39)

Combining (36) and (38) yields

lim
ε→0

f ε
i,t (ρ

∗ε
i,t ) = f i,t . (40)

By (37) and (39), we have

lim
ε→0

f ε
i,t (ρ

ε
i,t ) = f ∗

i,t . (41)

By virtue of (73) of Lemma 2 (see Appendix), (34) and (40),
we obtain

lim
ε→0

D∗ε(ρ∗ε , r∗ε, q∗ε) = D(ρ, r , q), (42)

where D∗ε(ρ∗ε, r∗ε , q∗ε) is the optimal function value of
Problem APCTM and D(ρ, r , q) is the associated objective
function value of Problem PCTM. Similarly, by (75) of
Lemma 2 (see Appendix), (35) and (41), we obtain

lim
ε→0

Dε(ρε, r ε, qε) = D∗(ρ∗, r∗, q∗), (43)

where Dε(ρε, r ε, qε) is the associated objective function value
of Problem APCTM and D∗(ρ∗, r∗, q∗) is the optimal func-
tion value of Problem PCTM.

For any r ∈ F and r ε ∈ Fε , we have

D∗(ρ∗, r∗, q∗) ≤ D(ρ, r , q), (44)

and

lim
ε→0

D∗ε(ρ∗ε , r∗ε, q∗ε) ≤ lim
ε→0

Dε(ρε, r ε, qε). (45)

Combining (42), (43), (44) and (45), we obtain

D∗(ρ∗, r∗, q∗) ≤ D(ρ, r , q) = lim
ε→0

D∗ε(ρ∗ε , r∗ε, q∗ε)

≤ lim
ε→0

Dε(ρε, r ε, qε) = D∗(ρ∗, r∗, q∗).

Thus,

D(ρ, r , q) = D∗(ρ∗, r∗, q∗).

This completes the proof.
Problem APCTM is a smooth discrete time optimal control

problem which can be solved efficiently using gradient-based
optimization methods. The required gradient formulas for the
objective and constraint functions will be derived in the next
section.

IV. GRADIENT FORMULAS

To solve Problem APCTM, we need the gradients of the
objective and the constraint functions with respect to the
variables r .

A. Gradient Formulas

Let yt = {ρε
1,t , ρ

ε
2,t , . . . , ρ

ε
I,t , q1,t , q2,t , . . . , qJ,t}� ∈ R

I+J

and rt = {r1,t , r2,t . . . , rJ,t }� ∈ R
J be the state and control

vectors, respectively. Then, for any t = 1, 2, . . . , T − 1, the
state equations of (4) and (32) are written in compact form as
given below:

yt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρε
1,t

ρε
2,t
...

ρε
I,t

q1,t

q2,t
...

qJ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�t

�x1
· r0,t

�t

�x2
· f ε

1,t

...
�t

�xI
· f ε

I−1,t

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�t

�x1
· f ε

1,t

�t

�x2
· f ε

2,t

...
�t

�xI
· f ε

I,t

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�t

�x1
· r1,t

�t

�x2
· r2,t

...
�t

�xI
· rI,t

−�t · r1,t

−�t · r2,t
...

−�t · rJ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− �t

�x1
· s1,t

− �t

�x2
· s2,t

...

− �t

�xI
· sI,t

�t · d1,t

�t · d2,t
...

�t · dJ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

Let F(t, yt , rt ) denote the right hand side of the difference
equation (46). It contains state variables, control variables
and time. The initial condition for the system of difference
equations is

y1 = [ρ1,1, . . . , ρI,1, q1,1, . . . , qJ,1]� ∈ R
I+J . (47)

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on March 02,2023 at 02:31:59 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: SMOOTHING METHOD FOR RAMP METERING 13363

We now consider the following class of discrete time
optimal control problems in canonical formulation. Let

	0(yT (r)) =
I∑

i=1

(ρε
i,T �t�xi − f ε

i,T �t�xi

vi
) +

J∑
j=1

q j,T �t,

L0(yt (r)) =
I∑

i=1

(ρε
i,t �t�xi − f ε

i,t �t�xi

vi
+

J∑
j=1

q j,t�t .

Then,

g0(r) = 	0(yT (r)) +
T −1∑
t=1

L0(t, yt (r)),

where g0(r) is the objective function which is to be optimized
subject to r ∈ U . Similarly, we rewrite the constraints as
follows:

gl(r) = 	l(yT (r)) +
T −1∑
t=1

Ll (t, yt(r), rt )

= −ρε
i,t , 1 ≤ l ≤ I T,

i = 1 . . . , I, t = 1, . . . , T,

gl(r) = 	l(yT (r)) +
T −1∑
t=1

Ll (t, yt(r), rt )

= ρε
i,t − ρmax,i , I T + 1 ≤ l ≤ 2I T,

i = 1 . . . , I, t = 1, . . . , T,

gl(r) = 	l(yT (r)) +
T −1∑
t=1

Ll (t, yt(r), rt )

= −q j,t , 2I T + 1 ≤ l ≤ (2I + J )T,

j = 1 . . . , J, t = 1, . . . , T,

gl(r) = 	l(yT (r)) +
T −1∑
t=1

Ll (t, yt(r), rt )

= q j,t − qmax,i, (2I + J )T + 1 ≤ l ≤ 2(I + J )T,

j = 1 . . . , J, t = 1, . . . , T .

These constraint functions are said to be in canonical form,
because they are in the same form as the objective function.
Now, we can derive the gradient formulas of the objective and
constraint functions in a unified way. Define

r = [(r1)
�, (r2)

�, . . . , (rT −1)
�]�.

Let the control vector r be perturbed by ξ r̂ , where ξ > 0
is a small constant and r̂ is an arbitrary but fixed perturbation
of r given by

r̂ = [(̂r1)
�, (̂r2)

�, . . . , (̂rT −1)
�]�.

Then, we have

r(ξ) = r + ξ r̂ = [(r1(ξ))�, (r2(ξ))�, . . . , (rT −1(ξ))�]�,

where

rt (ξ) = rt + ξ r̂ (ξ), t = 1, . . . , T − 1.

Consequently, the state of the system will be perturbed, and
so are the objective and constraint functions.

Define

yt (ξ) = yt (r(ξ)), t = 2, . . . , T . (48)

Then,

yt+1(ξ) = F(t, yt (ξ), rt (ξ)). (49)

The variation of the state for t = 1, 2, . . . , T − 1 is:
�yt+1 = ∂ F(t, yt , rt )

∂yt
�yt + ∂ F(t, yt , rt )

∂rt
r̂t (50)

with

�y1 = 0. (51)

For the l−th function (l = 0 is the objective function),
we have

∂gl(r)

∂r
r̂ = ∂	l(yT )

∂yT
�yT +

T −1∑
t=1

[∂Ll(t, yt , rt )

∂yt
�yt

+∂Ll(t, yt , rt )

∂rt
r̂t ]. (52)

For each l = 0, 1, . . . , 2(I + J )T , define the Hamiltonian

Hl(t, yt , rt , λ
l
t+1) = Ll(t, yt , rt ) + (λl

t+1)
�F(t, yt , rt ),

where λl
t ∈ R

I+J , t = T, T − 1, . . . , 2, denotes the co-state
sequence for the l−th canonical constraint. Then, it follows
from (52) that

∂gl(r)

∂r
r̂ = ∂	l(yT )

∂yT
�yT +

T −1∑
t=1

{∂ Hl(t, yt , rt , λ
l
t+1)

∂yt
�yt

− (λl
t+1)

� ∂ F(t, yt , rt )

∂yt
�yt +

∂ Hl(t, yt , rt , λ
l
t+1)

∂rt
r̂t

− (λl
t+1)

� ∂ F(t, yt , rt )

∂rt
r̂t }. (53)

Based on (50) and (51), we have

�yt+1 = ∂ F(t, yt , rt )

∂yt
�yt + ∂ F(t, yt , rt )

∂rt
r̂t . (54)

Let the co-state λl
t be determined by the following system

of difference equations:

(λl
t )

� = ∂ Hl(t, yt , rt , λ
l
t+1)

∂yt
, t = T − 1, T − 2, . . . , 2, (55)

and

(λl
T )� = ∂	l(yT )

∂yT
. (56)

By virtue of (53), (54), (55), (56), (48) and (49), we obtain

∂gl(r)

∂r
r̂ = [∂ Hl(1, y1, r1, λ

l
2)

∂r1
, . . . ,

∂ Hl(T − 1, yT−1, rT −1, λ
l
T )

∂rT −1
]̂r .

Because r̂ is arbitrary, we have the following gradient
formula:
∂gl(r)

∂r
= [∂ Hl(1, y1, r1, λ

l
2)

∂r1
, . . . ,

∂ Hl(T − 1, yT−1, rT −1, λ
l
T )

∂rT −1
]. (57)
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Now we summarize the gradient computation in the follow-
ing theorem.

Theorem 2: Consider Problem APCTM. Then, for each
l = 0, 1, . . . , 2(I + J )T , the gradient of gl(r) with respect
to control vector r is given by (57), where r = [(r1)

�,
(r2)

�, . . . , (rT −1)
�]�.

B. Algorithm

Problem APCTM is essentially a nonlinear mathematical
programming problem where the decision vector is the control
vector r . Many gradient-based optimization methods, such as
sequential quadratic programming (SQP), can be used to solve
it. To apply gradient-based optimization methods, for each
r ∈ V , we need the values of the objective function g0(r)
and the constraint functions gl(r), l = 1, 2, . . . , 2(I + J )T ,
together with their corresponding gradients. Detailed compu-
tation is given in Algorithm 1.

Algorithm 1 : Algorithm to Compute Gradients of Objective
Function and Constraints
1: Initialization: For a given r ∈ V and initial condition (47).
2: Output: Compute the solution yt+1(r), t = 1, 2, . . . , T − 1

of system (46) forward in time from t = 1 to t = T − 1.
3: for l = 0 to 2(I + J )T do
4: Compute 	l(yT (r)).
5: for t = 1 to T − 1 do
6: Compute Ll(t, yt (r), rt ).
7: end for
8: Compute

∑T −1
t=1 Ll(t, yt (r), rt ).

9: Compute gl(r) = 	l(yT (r)) + ∑T −1
t=1 Ll(t, yt (r), rt ).

10: for t = T to 2 do
11: Solve the system of the co-state system (55) and (56)

backward in time. Let λl
t (r) be the solution obtained.

12: end for
13: Calculate the gradients of gl using (57).
14: end for

Step 2 in Algorithm 1 is to compute the values of yt (r)
corresponding to each given r . Then, gl(r) is computed in
Step 9 based on Step 4 and Step 8. After that, the co-state
system (55) and (56) is solved backward in time from t = T
to t = 2 to acquire λl

t (r). Finally, the gradients of the objective
function and the constraint functions are calculated using the
gradient formulas given in Theorem 2.

V. NUMERICAL STUDIES

In this section, numerical performance of a ramp metering
method based on the proposed model is given. A Model
Predictive Control (MPC) approach is utilized to achieve traffic
response control.

The MPC approach has been widely utilized in freeway
traffic control problems, see [30]–[32]. Based on the current
state of the traffic system, the MPC approach utilizes a
traffic model to predict dynamic of the state, and finds an
optimal control signal which gives the optimal value of the
objective function. This property guarantees that the con-
troller can take advantage of potentially larger future gains at

a current (smaller) cost, thereby avoiding short-sighted control
action.

After optimization, the values for the control variables of
the first sample of the optimal control action are applied to
the process. The remaining control signals are recalculated in
a finite rolling horizon scheme. Readers can refer to [33] for
a detailed description of the MPC method.

A. MPC Design

In this section, we first redefine the MPC objective func-
tion, which minimizes the total delay of the freeway system,
including mainline delay and on-ramp delay for l = t, . . . , t +
Np − 1. It is similar to the cost function defined in (31). The
optimization problem is reformulated as follows:

Dt =
t+Np−1∑

l=t

[
I∑

i=1

(ρi,l�xi�t − fi,l�xi�t

vi
) +

J∑
j=1

q j,l�t]. (58)

Note that the tuning rules used to select the appropriate
value of the prediction horizon Np and control sample time Nc

are very important to the performance of MPC [3]. Normally,
the value of Np should be larger than the typical travel time
from the controlled segment to the exit of the network. The
reason is that if the prediction horizon Np is shorter than the
typical travel time, the vehicles affected by the current control
action have no effect on the network operation before exiting.
On the other hand, Np should not be too large due to the
computational complexity of the MPC optimization problem.
Hence, we choose Np as the typical time in the network
based on this reasoning. For the control sample time Nc ,
we will choose a value that represents the trade-off between
performance and computational effort.

Performance of the following models are compared:
• Primal cell transmission model (PCTM)
• Linear inequality relaxation based method (LICTM)
• Big-M method (BMM)
• Approximate model (APCTM)
• Generalized non-holding back linear programming for-

mulation (GNHBLP) proposed by Zhu [34] to address
holding back problems.

All the experiments were ran on a computer with
Intel(R) Core(TM) i7-8565U CPU-1.80GHz 1.99 GHz and
RAM 16GB. We use the MATLAB implementation of the
SQP algorithm (fmincon) to solve the models PCTM, LICTM,
APCTM and GNHBLP, and use the GUROBI [35] to solve the
model BMM.

B. Example 1

1) Scenario: The example is selected from the Kwinana
Freeway in the vicinity of Perth in Australia. This section of
freeway is divided into I = 26 cells with J = 8 on-ramps
and 4 off-ramps. Each segment has a longitude of �xi = 500m
for any i = 1, . . . , I . Cells i = 1, 3, 4, 6, . . . , 24 have 3 lanes
and cells i = 2, 5, 25, 26 have 4 lanes. Fig. 3 shows the details
of this example.

There are eight control signals: ramp metering in cells 2,
5, 8, 9, 10, 16, 17, 25, respectively. We measured density,
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Fig. 3. Road graph.

TABLE II

MODEL PARAMETERS

Fig. 4. Mainline demand, on-ramp demands and out-going flows.

flow, speed, on-ramp demands and out-going flows at each
sample time t . We can obtain the flow-density fundamental
diagrams from the data measured by detectors installed in the
Kwinana Freeway. These model parameters are calculated and
are given in Table II. The mainline demand, ramp demands and
out-going flows are measured from the detectors, see Fig. 4.
Traffic control can be used to improve the performance of the
freeway system. The time chosen is 4h from 6 : 00 am to
10 : 00 am, which corresponds to 960 steps. In this example,
we select Np = 33, i.e., 8 minutes as predictive horizon, and
Nc = 8, i.e., 2 minutes for control sample time, which meet
the above requirements.

2) Experiment Results: The density results for the six mod-
els (actually being measured, PCTM, LICTM, BMM, APCTM
and GNHBLP) are shown in Fig. 5. The bars on the right side

Fig. 5. Density for actually being measured, PCTM, LICTM, BMM, APCTM
and GNHBLP.

of each of Figs. 5(a)-5(f) show the changes in the values of
the corresponding state variables that increase from bottom
to top. From Figs. 5(a)-5(f), we can observe the evolution
for density for each of the models (PCTM, LICTM, BMM,
APCTM and GNHBLP). As the demands for the mainline
and on-ramps increase, the density at the junctions of the
mainline and on-ramps increases. Consequently, the speed
decreases, congestion gradually occurs, and the congestion
wave propagates upstream from the junction. This situation
lasts approximately two hours, which is consistent with the
traffic flow during the morning rush hour, i.e., from 7:00
am to 9:00 am. From Figs. 5(b), 5(d) and 5(e), we observe
that the changing trend of our model APCTM is almost the
same as that of PCTM and BMM. This is consistent with our
theoretical analysis.

The traffic flow results for the six models (actually being
measured, PCTM, LICTM, BMM, APCTM and GNHBLP)
are shown in Fig. 6. From Figs. 6(a)- 6(f), we can observe the
evolution of traffic flow of the models (PCTM, LICTM, BMM,
APCTM and GNHBLP). Compared the result of LICTM with
those of other models, we see that PCTM, BMM, APCTM and
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Fig. 6. Flow for actually being measured, PCTM, LICTM, BMM, APCTM
and GNHBLP.

GNHBLP can solve the flow holding-back problem. However,
the performance of PCTM, BMM and APCTM is better than
that of GNHBLP. The experimental results agree with the
theoretical analysis.

We show the ramp metering and queue length of the five
models (PCTM, LICTM, BMM, APCTM and GNHBLP) in
Fig. 7 and Fig. 8. From Figs. 7(a), 7(c) and 7(d), we see
that the solution of our model APCTM converges to those
of PCTM and BMM when the parameter ε is appropriately
chosen. Due to the flow holding-back problem arising from
linear relaxation, the solution of LICTM shows a different
trend. GNHBLP only solves the flow holding-back problem
to a certain extent.

We compare the sizes of the fives models (PCTM, LICTM,
BMM, APCTM, GNHBLP) with different prediction horizon
Np in Table III, where Nv and Nc denote, respectively, the
numbers of variables and constraints. We find that PCTM and
APCTM have considerably fewer numbers of variables and
constraints than LICTM, BMM and GNHBLP. Even though
PCTM and APCTM have the same numbers of variables and
constraints, we find that the time cost of APCTM is far less

Fig. 7. Ramp metering for PCTM, LICTM, BMM, APCTM and GNHBLP.

TABLE III

THE SIZES OF VARIABLES AND CONSTRAINTS OF THE FIVE

MODELS WITH DIFFERENT PREDICTIVE HORIZON Np

than that required by PCTM model (Table IV). In particular,
the trend is more evident when the number of the variables
increases. BMM equivalently represents the ‘min’ operators by
introducing a large number of auxiliary variables, so the CPU
time is more than that required by APCTM. Since LICTM and
GNHBLP are linear program problems, the computational time
will obviously be less than that of APCTM. However, they are
relaxation problems of the original problem, so the total delay
and ramp delay obtained tend to be longer.
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Fig. 8. Queue length for PCTM, LICTM, BMM, APCTM and GNHBLP.

TABLE IV

THE CPU TIME (IN SECONDS) REQUIRED FOR APPLICATION (58)
WITH DIFFERENT PREDICTIVE HORIZON Np

For comparison, we summarize the total delay, ramp delay
and total CPU time (in seconds) of the above five models
in Table V. Clearly, we can see that the total delay of
APCTM is better than LICTM and GNHBLP because our
model APCTM does not have a flow holding-back problem.
In Table V, we can also see that the total delay and ramp
delay of APCTM are, respectively, 99.9965% and 99.8162%
of those of PCTM. Compared to the case with no control,
our model can reduce the total delay by 55.6279%. Compared
with the LICTM, our approximate model reduces the total

TABLE V

TOTAL DELAY, RAMP DELAY AND TOTAL CPU TIME (IN SECONDS)
REQUIRED FOR APPLICATION (58) WITH NP=33, NC=8

Fig. 9. Road graph.

delay and ramp delay by 2.0455% and 2.0192%, respectively.
Furthermore, the total delay and ramp delay of APCTM are
also better than those of GNHBLP. The total CPU time taken
by APCTM is 119.1033s. Since in the real application, the
control sample time is 2 minutes, it means that the CPU
time taken by APCTM can meet the requirements of online
control applications. By comparison, we can find the total
CPU time of PCTM and BMM are, respectively, 2.6856 and
1.8263 times of that of APCTM. Compared with LICTM and
GNHBLP, APCTM requires more computational time due to
the involvement of nonlinearity. On the other hand, the total
delay and ramp delay are shorter when compared with those
of LICTM and GNHBLP.

C. Example 2

1) Scenario: The example is built based on the actual situa-
tion of the Freeway in the vicinity of Shapingba, Chongqing in
China. The section of freeway under consideration is divided
into I = 15 cells with J = 2 on-ramps. Cells i = 1, 2, . . . , 9
have 4 lanes and cells i = 10, 11, . . . , 15 have 3 lanes. Fig. 9
shows the information of road map. For this example, we use
SUMO to simulate the traffic flow dynamic from 6:00 am
to 10:00 am to obtain the required data. Mainline demand
and on-ramp demands are presented in Fig. 10. The values
of parameters are listed in Table VI. In this example, we let
N p = 17, i.e., 2 minutes and 40 seconds as predictive horizon,
and Nc = 6, i.e., 1 minute for control sample time, which can
meet the above requirements.

2) Experiment Results: We compare the sizes and CPU
time (in seconds) of the five models (PCTM, LICTM, BMM,
APCTM, GNHBLP) for each iteration with N p = 17, Nc = 6
in Table VII. Similar to Example 1, PCTM and APCTM
have fewer numbers of variables and constraints than those of
LICTM, BMM and GNHBLP. APCTM can be solved more
efficiently than PCTM and BMM, but not better than LICTM
and GNHBLP.
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TABLE VI

MODEL PARAMETERS

Fig. 10. Road graph.

TABLE VII

THE SIZES AND CPU TIME (IN SECONDS) REQUIRED

FOR APPLICATION (58) WITH NP=17, NC=6

The total delay, ramp delay and total CPU time (in sec-
onds) of the five models are summarized in Table VIII.
From Table VIII, we clearly observe that the total delay
of APCTM is better than those of LICTM and GNHBLP,
because APCTM can solve the flow holding-back problem if
the parameter ε is appropriately chosen. In addition, we can
also observe that the total delay and ramp delay of our
APCTM are, respectively, 99.9775% and 99.678% of those
obtained using PCTM. Compared with the case of no control,
APCTM can reduce the total delay by 52.4996%, but the ramp
delay increases by 18.6882%. Compared with LICTM and
GNHBLP, APCTM reduces the total delay by 1.7654%
and 0.872%, respectively. As for the total CPU time, PCTM
and BMM are, respectively, 2.0173 and 1.6762 times of that
of APCTM, but LICTM and GNHBLP take shorter times than
that of APCTM. In this example, the total CPU time taken by

TABLE VIII

TOTAL DELAY, RAMP DELAY AND TOTAL CPU TIME (IN SECONDS)
REQUIRED FOR APPLICATION (58) WITH NP=17, NC=6

APCTM is 38.8343s. Since in the real application, the control
sample time is 1 minute, it means that the CPU time taken
by APCTM can also meet the requirements of online control
applications.

Based on the results obtained for Example 1 and
Example 2, we can conclude that the total delay and ramp
delay of APCTM is better than those of LICTM and GNHBLP.
Furthermore, the CPU time of APCTM is at least 2 and
1.5 times of those of PCTM and BMM. Therefore, APCTM
is efficient in terms of computational time and the reduction
of total delay and ramp delay.

VI. CONCLUSION

This paper proposed a novel approximate optimization
model based on the CTM to overcome the flow holding-back
problem caused by unrealistic fundamental diagrams if
inequality convex relaxation is used directly. Theoretical
analysis showed that the solution obtained from our model
converges to the solution of the original CTM as ε approaches
to zero. To obtain a feedback control law, a customized MPC
approach is designed under the framework of our proposed
optimization problem. Experimental results showed that our
approach is better than the existing methods. Note that the
scale of the numerical experiments in this paper is rather
limited due to the availability of data. Conducting large-scale
numerical applications in future is necessary. For example,
we can take the entire Kwinana Freeway as a test bed to
verify the effectiveness of our proposed model. In addition,
capacity drop is not considered when on-ramp is merging to
the mainline in this paper.

APPENDIX

In this appendix, we will give some auxiliary lemmas, which
are used in the convergence analysis. Lemma 1 is to estimate
upper and lower bounds of fi,t − f ε

i,t , which play an essential
role in the proofs of Lemma 2 and Theorem 1.

Lemma 1: Consider (23), (24) and (29). Then, for all ε > 0,
it holds that − ε

4 ≤ fi,t − f ε
i,t ≤ 3ε

4 , and limε→0 f ε
i,t = fi,t .

Proof: First, we estimate an upper bound of fi,t − f ε
i,t for

any i and t . By (27) and (29), it gives

fi,t − f ε
i,t = fi,t − f εε

i,t + f εε
i,t − f ε

i,t

= 1

2
[ f D

i,t + f S
i+1,t − | f D

i,t − f S
i+1,t | − ( f Dε

i,t
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+ f Sε
i+1,t − | f Dε

i,t − f Sε
i+1,t |)] + f εε

i,t − f ε
i,t

≤ ε

2
+ 1

2
(| f Dε

i,t − f Sε
i+1,t | − | f D

i,t − f S
i+1,t |), (59)

where the last inequality is due to (25), (26) and (30). We next
discuss the positivity and negativity of f Dε

i,t − f Sε
i+1,t and f D

i,t −
f S
i+1,t . Let

a = f Dε
i,t − f Sε

i+1,t , b = f D
i,t − f S

i+1,t . (60)

1): When a ≥ 0, b ≥ 0, we obtain

|a| − |b| = f Dε
i,t − f Sε

i+1,t − f D
i,t + f S

i+1,t ≤ ε

4
,

and thus

fi,t − f ε
i,t ≤ 5ε

8
. (61)

2): When a < 0, b < 0, we have

|a| − |b| = f Sε
i+1,t − f Dε

i,t + f D
i,t − f S

i+1,t ≤ ε

4
,

and thus

fi,t − f ε
i,t ≤ 5ε

8
. (62)

3): When a ≥ 0, b < 0, we have

|a| − |b| = f Dε
i,t − f Sε

i+1,t + f D
i,t − f S

i+1,t ≤ ε

2
,

and thus

fi,t − f ε
i,t ≤ 3ε

4
. (63)

4): When a < 0, b ≥ 0, we obtain

|a| − |b| = f Sε
i+1,t − f Dε

i,t − f D
i,t + f S

i+1,t ≤ ε

2
,

and thus

fi,t − f ε
i,t ≤ 3ε

4
. (64)

By (61), (62), (63) and (64), it follows that

fi,t − f ε
i,t ≤ 3ε

4
. (65)

Next, we estimate a lower bound of fi,t − f ε
i,t for any i and

t . By (27) and (29), it gives

fi,t − f ε
i,t ≥ 1

2
(| f Dε

i,t − f Sε
i+1,t | − | f D

i,t − f S
i+1,t |). (66)

Similarly, we study the positivity and negativity of f Dε
i,t −

f Sε
i+1,t and f D

i,t − f S
i+1,t .

1): When a ≥ 0, b ≥ 0,

|a| − |b| = f Dε
i,t − f Sε

i+1,t − f D
i,t + f S

i+1,t ≥ −ε

4
,

and thus

fi,t − f ε
i,t ≥ −ε

8
. (67)

2): When a < 0, b < 0,

|a| − |b| = f Sε
i+1,t − f Dε

i,t + f D
i,t − f S

i+1,t ≥ −ε

4
,

and thus

fi,t − f ε
i,t ≥ −ε

8
, (68)

3): When a ≥ 0, b < 0,

|a| − |b| = f Dε
i,t − f Sε

i+1,t + f D
i,t − f S

i+1,t ≥ − ε

2
,

and thus

fi,t − f ε
i,t ≥ −ε

4
. (69)

4): When a < 0, b ≥ 0,

|a| − |b| = f Sε
i+1,t − f Dε

i,t − f D
i,t + f S

i+1,t ≥ − ε

2
,

and thus

fi,t − f ε
i,t ≥ −ε

4
. (70)

By (67), (68), (69) and (70), we have

fi,t − f ε
i,t ≥ −ε

4
. (71)

Due to (65) and (71), we obtain the first part of the result.
The second part of the result is obvious when ε → 0, and
thus the proof is completed.

Lemma 2: Let r∗ε be an optimal solution to Problem
APCTM. Then, there exists a subsequence of {r∗ε}, which is
again denoted by the original sequence, and a control vector
r ∈ F such that

lim
ε→0

||r∗ε − r || = 0, (72)

lim
ε→0

ρ∗ε
i,t = ρi,t , ∀i, t . (73)

Similarly, let r∗ be an optimal solution to Problem PCTM.
Then, there exists a sequence {r ε}, which is again denoted by
the original sequence, such that

lim
ε→0

||rε − r∗|| = 0, (74)

lim
ε→0

ρε
i,t = ρ∗

i,t , ∀i, t . (75)

Proof: Note that V is a compact subset of R
J . Since

{r∗ε} as a sequence in ε is in V , it is clear that there exists a
subsequence, which is again denoted by the original sequence,
and a control vector r ∈ F such that

lim
ε→0

||r∗ε − r || = 0. (76)

We prove limε→0 ρ∗ε
i,t = ρi,t by exploiting the mathematical

induction. The result is true when t = 1 for each i , because
limε→0 ρ∗ε

i,1 = ρi,1. Next, we prove that the result is true when
t = 2 for any i = 1, . . . , I . Based on Equations (2) and (32),
we have, for each i ,

ρi,2 = ρ i,1 + �t

�xi
× ( f i−1,1 − f i,1 + r i,1 − si,1),

and

ρ∗ε
i,2 = ρ∗ε

i,1 + �t

�xi
× ( f ε

i−1,1(ρ
∗ε
i−1,1) − f ε

i,1(ρ
∗ε
i,1) + r∗ε

i,1 − si,1),

where ρ i,1 = ρ∗ε
i,1 = ρi,1 for each i . Using Lemma 1, we obtain

for any i

lim
ε→0

f ε
i,1(ρ

∗ε
i,1) = f i,1. (77)

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on March 02,2023 at 02:31:59 UTC from IEEE Xplore.  Restrictions apply. 



13370 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

Since 0 < �t
�xi

< 1, by (76) and (77), we have

lim
ε→0

ρ∗ε
i,2 = ρ i,2, ∀i. (78)

Now, we assume that the result is true when t = T − 1 for
any i = 1, . . . , I , i.e.,

lim
ε→0

ρ∗ε
i,T −1 = ρ i,T −1. (79)

Next, we shall prove that it is also true when t = T . Based
on equations (2) and (32), we have, for any i = 1, . . . , I ,

ρi,T = ρi,T −1 + �t

�xi
× ( f i−1,T −1

− f i,T −1 + r i,T −1 − si,T −1), (80)

and

ρ∗ε
i,T = ρ∗ε

i,T −1 + �t

�xi
× ( f ε

i−1,T −1(ρ
∗ε
i−1,T −1)

− f ε
i,T −1(ρ

∗ε
i,T −1) + r∗ε

i,T −1 − si,T −1). (81)

Using Lemma 1, we obtain, for any i = 1, . . . , I ,

lim
ε→0

f ε
i,T −1(ρi,T −1) = f i,T −1. (82)

Furthermore, f ε
i,t is continuously differentiable with respect

to each of the components of ρ and r . Thus, it follows
from (76) and (79) that

lim
ε→0

f ε
i,T −1(ρ

∗ε
i,T −1) = lim

ε→0
f ε
i,T −1(ρi,T −1). (83)

The following result follows readily from (82) and (83)

lim
ε→0

f ε
i,T −1(ρ

∗ε
i,T −1) = f i,T −1. (84)

Then, limε→0 ρ∗ε
i,T = ρi,T is obvious by virtue of (79), (80),

(81) and (84). The second part of the result follows readily by
using a similar approach, and thus the details are omitted. The
proof is completed.
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