

TOWARDS A RESILIENT BUILT ENVIRONMENT RISK AND ASSET MANAGEMENT

ROLE OF MAINTENANCE IN REDUCING BUILDING VULNERABILITY TO EXTREME WEATHER EVENTS

Lam Pham, Ekambaram Palaneeswaran Swinburne University of Technology, Australia Rodney Stewart Griffith University, Australia

March 27-29, 2019

CONTENT

• Impacts of weather events in Australia

• Australia practice

- Opportunities for reducing building vulnerability
 - Storms and cyclones
 - Floods
 - Wildfires

AUSTRALIA = 6 STATES + 2 TERRITORIES

AUSTRALIAN DISASTER LOSSES (FROM HANDMER, LADDS AND MAGEE 2018)

ANNUAL COST OF WEATHER EVENTS

	Wildfire	Flood	Cyclone	Storm	Total
VIC	8.9	3.6	0	9.0	21.5
NSW	1.8	7.2	0	16.8	25.8
SA	1.2	1.6	0	0.4	3.2
WA	0.4	0.1	2.7	1.2	4.5
QLD	0.6	14.4	13.1	3.8	31.9
TAS	1.9	0.4	0	0	2.3
NT	0	0.8	3.2	0	4.0
ACT	2.2	0.2	0	0.5	2.9
Total	17	28	19	32	96

As percentage of yearly average national loss for the last 46 years

EMERGING RISKS

- Climate related risks
 - Extreme weather events become more intense
 - Heavy rainfall after long term drought
- Change in construction practice
 - Leaky house syndrome
 - Condensation in living space
- Non conforming building products
 - Fire resistance of cladding materials
 - Changing of supply sources

AUSTRALIAN POLICIES & REGULATIONS

- Issues with policies and regulation
 - performance-based: difficult to control
 - exclude post construction activities (e.g. maintenance)
 - Not covering all extreme events
- Ineffective compliance and enforcement system
 - Senate inquiry (2018)- non conforming building products
 - Shergold and Weir report (2018)- lack of control

OPPORTUNITIES FOR REDUCING VULNERABILITIES

- Opportunities vary with type of hazards
- Need to get better understanding
 - Risk exposure
 - Building vulnerability
 - Hazard characteristics

(Sendai Framework for Disaster Risk Reduction)

- Building Vulnerability
 - Nature of the hazard
 - Age of building
 - Type of construction

FLOOD – BUILDING VULNERABILITY

- Damage is associated with the effects of water on materials such as wall finishes and timber, mud collection inside the building and under the floor space
- Regulation allows buildings in flood prone areas since 2012
- Standard for construction of buildings on flood-prone land will prevent structural failure but not damage for the submerged parts
- Opportunity to 'build better' only exists after event rarely taken

STORM

Prof Lam Pham et al.

Thunder storm (Southern Australia)

Hail storm

Cyclone (Northern Australia) Dust storm

Tornado

STORM DAMAGE

Region	Basic Design Gust Speed
А	45 – 46 m/s
В	57 – 60 m/s
С	69 – 74 m/s
D	88 – 94 m/s

- Tightening of regulation around 1980
- Water penetration caused by wind driven rain – main cause of property damage
- Vulnerable building elements identified by damage surveys
- Software package for condition assessment developed

WIND

STORMS – BUILDING VULNERABILITY

- Damage is associated with high wind, hail and heavy rain (flash flood and water penetration)
- Regulation requires design for wind with annual probability of 1:500 to 1:1000 for most buildings
- Regulation also requires weatherproofing with a test method for verification
- No design requirements for hail at present most heavy loss per single event

Central Queensland 2018

WILDFIRE

Fire seasons vary with location (Map by Bureau of Meteorology)

Location specific hazard varies with:

- Weather
- Vegetation
- Ground slope

SOUTHERN AUSTRALIA SEASONAL BUSHFIRE OUTLOOK 2018

Prof Lam Pham et al.

- Regional risk varies from year to year.
- Bushfire potential maps issued every year (AFAC+CRC)
- Grass fire and forest fire

WILDFIRE – BUILDING VULNERABILITY

- Damage is associated with ember attack usually within 100m of the bush but could be up to 1000m
- Standard for buildings constructed in bushfire prone areas since 1999
- Building vulnerability in bushfire prone areas is related to evacuation policy
 - Mandatory evacuation: better safety for people
 - Stay to put out spot fire: better for buildings
- Maintenance reduces the risk of ignition due to embers
 - Removing combustibles around the buildings
 - Preventing embers from entering/accumulating in building cavities (roof, wall, under floor ...)

CONCLUDING REMARKS

A brief overview of

- Australian major extreme weather events and their impacts
- Australian building vulnerabilities to these events
- Contributions that maintenance can make to mitigate the impacts of these events

Thank you for your attention.

ACKNOWLEDGEMENT

- Our project (SBEnrc P1.53) Resilient Buildings: Informing Maintenance for Long-term Sustainability has been sponsored by the Sustainable Built Environment National Research Centre in Australia.
 - Website for SBEnrc project P1.53:

https://sbenrc.com.au/research-programs/1-53/

